BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38226479)

  • 1. Impact of the quality of resected thyroid cancer tissue sample on next-generation sequencing testing.
    Hatanaka KC; Nakamura K; Katoh R; Ito K; Hirokawa M; Miyauchi A; Matsuno Y; Kano S; Okada Y; Mori J; Ito YM; Hatanaka Y
    Pathol Int; 2024 Feb; 74(2):77-86. PubMed ID: 38226479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of DNA integrity on the success rate of tissue-based next-generation sequencing: Lessons from nationwide cancer genome screening project SCRUM-Japan GI-SCREEN.
    Kuwata T; Wakabayashi M; Hatanaka Y; Morii E; Oda Y; Taguchi K; Noguchi M; Ishikawa Y; Nakajima T; Sekine S; Nomura S; Okamoto W; Fujii S; Yoshino T;
    Pathol Int; 2020 Dec; 70(12):932-942. PubMed ID: 33030786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of amplicon-based next generation DNA sequencing for diagnostic gene mutation profiling in oncopathology.
    Sie D; Snijders PJ; Meijer GA; Doeleman MW; van Moorsel MI; van Essen HF; Eijk PP; Grünberg K; van Grieken NC; Thunnissen E; Verheul HM; Smit EF; Ylstra B; Heideman DA
    Cell Oncol (Dordr); 2014 Oct; 37(5):353-61. PubMed ID: 25209392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue surface area and tumor cell count affect the success rate of the Oncomine Dx Target Test in the analysis of biopsy tissue samples.
    Nemoto D; Yokose T; Katayama K; Murakami S; Kato T; Saito H; Suzuki M; Eriguchi D; Samejima J; Nagashima T; Ito H; Yamada K; Nakayama H; Masuda M
    Thorac Cancer; 2021 Jan; 12(2):194-200. PubMed ID: 33185331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of DNA and RNA quality from archival formalin-fixed paraffin-embedded tissue for next-generation sequencing - Retrospective study in Japanese single institution.
    Fujii T; Uchiyama T; Matsuoka M; Myojin T; Sugimoto S; Nitta Y; Okabe F; Sugimoto A; Sekita-Hatakeyama Y; Morita K; Itami H; Hatakeyama K; Ohbayashi C
    Pathol Int; 2020 Sep; 70(9):602-611. PubMed ID: 32542983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplicon-Based NGS Panels for Actionable Cancer Target Identification in Follicular Cell-Derived Thyroid Neoplasia.
    Madsen MB; Kiss K; Cilius Nielsen F; Bennedbæk FN; Rossing M
    Front Endocrinol (Lausanne); 2020; 11():146. PubMed ID: 32265839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small lung tumor biopsy samples are feasible for high quality targeted next generation sequencing.
    Kage H; Kohsaka S; Shinozaki-Ushiku A; Hiraishi Y; Sato J; Nagayama K; Ushiku T; Takai D; Nakajima J; Miyagawa K; Aburatani H; Mano H; Nagase T
    Cancer Sci; 2019 Aug; 110(8):2652-2657. PubMed ID: 31222846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput mutation profiling improves diagnostic stratification of sporadic medullary thyroid carcinomas.
    Simbolo M; Mian C; Barollo S; Fassan M; Mafficini A; Neves D; Scardoni M; Pennelli G; Rugge M; Pelizzo MR; Cavedon E; Fugazzola L; Scarpa A
    Virchows Arch; 2014 Jul; 465(1):73-8. PubMed ID: 24828033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Characterization of Sporadic Pediatric Thyroid Carcinoma with the DNA/RNA ThyroSeq v2 Next-Generation Sequencing Assay.
    Picarsic JL; Buryk MA; Ozolek J; Ranganathan S; Monaco SE; Simons JP; Witchel SF; Gurtunca N; Joyce J; Zhong S; Nikiforova MN; Nikiforov YE
    Pediatr Dev Pathol; 2016; 19(2):115-22. PubMed ID: 26367451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formalin-fixed paraffin-embedded sample conditions for deep next generation sequencing.
    Nagahashi M; Shimada Y; Ichikawa H; Nakagawa S; Sato N; Kaneko K; Homma K; Kawasaki T; Kodama K; Lyle S; Takabe K; Wakai T
    J Surg Res; 2017 Dec; 220():125-132. PubMed ID: 29180174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic evaluation of PAXgene® tissue fixation for the histopathological and molecular study of lung cancer.
    Southwood M; Krenz T; Cant N; Maurya M; Gazdova J; Maxwell P; McGready C; Moseley E; Hughes S; Stewart P; Salto-Tellez M; Groelz D; Rassl D;
    J Pathol Clin Res; 2020 Jan; 6(1):40-54. PubMed ID: 31571426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DV200 Index for Assessing RNA Integrity in Next-Generation Sequencing.
    Matsubara T; Soh J; Morita M; Uwabo T; Tomida S; Fujiwara T; Kanazawa S; Toyooka S; Hirasawa A
    Biomed Res Int; 2020; 2020():9349132. PubMed ID: 32185225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of appropriate conditions for Oncomine DxTT testing of FFPE specimens for driver gene alterations in non-small cell lung cancer.
    Iwama E; Yamamoto H; Okubo F; Ijichi K; Ibusuki R; Shiaraishi Y; Yoneshima Y; Tanaka K; Oda Y; Okamoto I
    Thorac Cancer; 2023 Aug; 14(23):2288-2296. PubMed ID: 37345344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation detection in formalin-fixed prostate cancer biopsies taken at the time of diagnosis using next-generation DNA sequencing.
    Manson-Bahr D; Ball R; Gundem G; Sethia K; Mills R; Rochester M; Goody V; Anderson E; O'Meara S; Flather M; Keeling M; Yazbek-Hanna M; Hurst R; Curley H; Clark J; Brewer DS; McDermott U; Cooper C
    J Clin Pathol; 2015 Mar; 68(3):212-7. PubMed ID: 25586381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved method for analysis of RNA present in long-term preserved thyroid cancer tissue of atomic bomb survivors.
    Hamatani K; Eguchi H; Mukai M; Koyama K; Taga M; Ito R; Hayashi Y; Nakachi K
    Thyroid; 2010 Jan; 20(1):43-9. PubMed ID: 19785523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moving towards a local testing solution for undetermined thyroid fine-needle aspirates: validation of a novel custom DNA-based NGS panel.
    Sgariglia R; Nacchio M; Migliatico I; Vigliar E; Malapelle U; Pisapia P; De Luca C; Iaccarino A; Salvatore D; Masone S; Troncone G; Bellevicine C
    J Clin Pathol; 2022 Jul; 75(7):465-471. PubMed ID: 33789920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer.
    Nikiforova MN; Wald AI; Roy S; Durso MB; Nikiforov YE
    J Clin Endocrinol Metab; 2013 Nov; 98(11):E1852-60. PubMed ID: 23979959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical Application of Next-Generation Sequencing in Advanced Thyroid Cancers.
    Ma LX; Espin-Garcia O; Bedard PL; Stockley T; Prince R; Mete O; Krzyzanowska MK
    Thyroid; 2022 Jun; 32(6):657-666. PubMed ID: 35262412
    [No Abstract]   [Full Text] [Related]  

  • 19. Next-generation sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed paraffin-embedded samples of human cancer and normal tissue.
    Hedegaard J; Thorsen K; Lund MK; Hein AM; Hamilton-Dutoit SJ; Vang S; Nordentoft I; Birkenkamp-Demtröder K; Kruhøffer M; Hager H; Knudsen B; Andersen CL; Sørensen KD; Pedersen JS; Ørntoft TF; Dyrskjøt L
    PLoS One; 2014; 9(5):e98187. PubMed ID: 24878701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity.
    Beltran H; Yelensky R; Frampton GM; Park K; Downing SR; MacDonald TY; Jarosz M; Lipson D; Tagawa ST; Nanus DM; Stephens PJ; Mosquera JM; Cronin MT; Rubin MA
    Eur Urol; 2013 May; 63(5):920-6. PubMed ID: 22981675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.