These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38226603)

  • 1. Mechanism of Ligand Binding to Theophylline RNA Aptamer.
    Akhter S; Tang Z; Wang J; Haboro M; Holmstrom ED; Wang J; Miao Y
    J Chem Inf Model; 2024 Feb; 64(3):1017-1029. PubMed ID: 38226603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular simulations and Markov state modeling reveal the structural diversity and dynamics of a theophylline-binding RNA aptamer in its unbound state.
    Warfield BM; Anderson PC
    PLoS One; 2017; 12(4):e0176229. PubMed ID: 28437473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast dynamics show that the theophylline and 3-methylxanthine aptamers employ a conformational capture mechanism for binding their ligands.
    Lee SW; Zhao L; Pardi A; Xia T
    Biochemistry; 2010 Apr; 49(13):2943-51. PubMed ID: 20214401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR chemical exchange as a probe for ligand-binding kinetics in a theophylline-binding RNA aptamer.
    Latham MP; Zimmermann GR; Pardi A
    J Am Chem Soc; 2009 Apr; 131(14):5052-3. PubMed ID: 19317486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of small molecules that target a tertiary-structured RNA.
    Menichelli E; Lam BJ; Wang Y; Wang VS; Shaffer J; Tjhung KF; Bursulaya B; Nguyen TN; Vo T; Alper PB; McAllister CS; Jones DH; Spraggon G; Michellys PY; Joslin J; Joyce GF; Rogers J
    Proc Natl Acad Sci U S A; 2022 Nov; 119(48):e2213117119. PubMed ID: 36413497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand Gaussian Accelerated Molecular Dynamics (LiGaMD): Characterization of Ligand Binding Thermodynamics and Kinetics.
    Miao Y; Bhattarai A; Wang J
    J Chem Theory Comput; 2020 Sep; 16(9):5526-5547. PubMed ID: 32692556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DNA Aptamer for Theophylline with Ultrahigh Selectivity Reminiscent of the Classic RNA Aptamer.
    Huang PJ; Liu J
    ACS Chem Biol; 2022 Aug; 17(8):2121-2129. PubMed ID: 35943093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alchemical free energy calculations via metadynamics: Application to the theophylline-RNA aptamer complex.
    Tanida Y; Matsuura A
    J Comput Chem; 2020 Jul; 41(20):1804-1819. PubMed ID: 32449538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying conformational changes of aptamer binding to theophylline: A combined biolayer interferometry, surface-enhanced Raman spectroscopy, and molecular dynamics study.
    Cui X; Song M; Liu Y; Yuan Y; Huang Q; Cao Y; Lu F
    Talanta; 2020 Sep; 217():121073. PubMed ID: 32498900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explicitly solvated ligand contribution to continuum solvation models for binding free energies: selectivity of theophylline binding to an RNA aptamer.
    Freedman H; Huynh LP; Le L; Cheatham TE; Tuszynski JA; Truong TN
    J Phys Chem B; 2010 Feb; 114(6):2227-37. PubMed ID: 20099932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of a heterogeneous free state in the formation of a specific RNA-theophylline complex.
    Jucker FM; Phillips RM; McCallum SA; Pardi A
    Biochemistry; 2003 Mar; 42(9):2560-7. PubMed ID: 12614150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-Binding of Adenosine by Aptamers Selected Using Theophylline.
    Huang PJ; Evans NM; Lu C; Li AZ; Dieckmann T; Liu J
    Chembiochem; 2023 Dec; 24(23):e202300566. PubMed ID: 37747943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating Molecular Dynamics Simulations for Drug Discovery.
    Koirala K; Joshi K; Adediwura V; Wang J; Do H; Miao Y
    Methods Mol Biol; 2024; 2714():187-202. PubMed ID: 37676600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-Binding of Four Adenosine/ATP Aptamers to Caffeine, Theophylline, and Other Methylxanthines.
    Ding Y; Xie Y; Li AZ; Huang PJ; Liu J
    Biochemistry; 2023 Aug; 62(15):2280-2288. PubMed ID: 37433121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leakage and slow allostery limit performance of single drug-sensing aptazyme molecules based on the hammerhead ribozyme.
    de Silva C; Walter NG
    RNA; 2009 Jan; 15(1):76-84. PubMed ID: 19029309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Aptamer-Small-Molecule Interactions Using Metastable States from Multiple Independent Molecular Dynamics Simulations.
    Rodríguez Serrano AF; Hsing IM
    J Chem Inf Model; 2022 Oct; 62(19):4799-4809. PubMed ID: 36134737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple fluorescent biosensor for theophylline based on its RNA aptamer.
    Rankin CJ; Fuller EN; Hamor KH; Gabarra SA; Shields TP
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(12):1407-24. PubMed ID: 17067962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Searching the Sequence Space for Potent Aptamers Using SELEX in Silico.
    Zhou Q; Xia X; Luo Z; Liang H; Shakhnovich E
    J Chem Theory Comput; 2015 Dec; 11(12):5939-46. PubMed ID: 26642994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand Gaussian Accelerated Molecular Dynamics 3 (LiGaMD3): Improved Calculations of Binding Thermodynamics and Kinetics of Both Small Molecules and Flexible Peptides.
    Wang J; Miao Y
    J Chem Theory Comput; 2024 Jul; 20(14):5829-5841. PubMed ID: 39002136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand Gaussian Accelerated Molecular Dynamics 2 (LiGaMD2): Improved Calculations of Ligand Binding Thermodynamics and Kinetics with Closed Protein Pocket.
    Wang J; Miao Y
    J Chem Theory Comput; 2023 Feb; 19(3):733-745. PubMed ID: 36706316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.