These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Collective motion of run-and-tumble repulsive and attractive particles in one-dimensional systems. Gutiérrez CMB; Vanhille-Campos C; Alarcón F; Pagonabarraga I; Brito R; Valeriani C Soft Matter; 2021 Dec; 17(46):10479-10491. PubMed ID: 34750600 [TBL] [Abstract][Full Text] [Related]
3. Diffusion of active particles in a complex environment: Role of surface scattering. Jakuszeit T; Croze OA; Bell S Phys Rev E; 2019 Jan; 99(1-1):012610. PubMed ID: 30780271 [TBL] [Abstract][Full Text] [Related]
4. Dispersion of run-and-tumble microswimmers through disordered media. Saintillan D Phys Rev E; 2023 Dec; 108(6-1):064608. PubMed ID: 38243487 [TBL] [Abstract][Full Text] [Related]
5. Run-and-tumble bacteria slowly approaching the diffusive regime. Villa-Torrealba A; Chávez-Raby C; de Castro P; Soto R Phys Rev E; 2020 Jun; 101(6-1):062607. PubMed ID: 32688514 [TBL] [Abstract][Full Text] [Related]
6. Superdiffusion in dispersions of active colloids driven by an external field and their sedimentation equilibrium. Chen YF; Wei HH; Sheng YJ; Tsao HK Phys Rev E; 2016 Apr; 93():042611. PubMed ID: 27176356 [TBL] [Abstract][Full Text] [Related]
8. Current fluctuations in noninteracting run-and-tumble particles in one dimension. Banerjee T; Majumdar SN; Rosso A; Schehr G Phys Rev E; 2020 May; 101(5-1):052101. PubMed ID: 32575200 [TBL] [Abstract][Full Text] [Related]
9. Entropy Production of Run-and-Tumble Particles. Paoluzzi M; Puglisi A; Angelani L Entropy (Basel); 2024 May; 26(6):. PubMed ID: 38920452 [TBL] [Abstract][Full Text] [Related]
10. A stochastic model for directional changes of swimming bacteria. Fier G; Hansmann D; Buceta RC Soft Matter; 2017 May; 13(18):3385-3394. PubMed ID: 28429013 [TBL] [Abstract][Full Text] [Related]
11. Langevin equations for the run-and-tumble of swimming bacteria. Fier G; Hansmann D; Buceta RC Soft Matter; 2018 May; 14(19):3945-3954. PubMed ID: 29736534 [TBL] [Abstract][Full Text] [Related]
12. Exact solution for the Anisotropic Ornstein-Uhlenbeck process. de Almeida RMC; Giardini GSY; Vainstein M; Glazier JA; Thomas GL Physica A; 2022 Feb; 587():. PubMed ID: 36937094 [TBL] [Abstract][Full Text] [Related]
13. Effect of anisotropy on the formation of active particle films. Rebocho TC; Tasinkevych M; Dias CS Phys Rev E; 2022 Aug; 106(2-1):024609. PubMed ID: 36109963 [TBL] [Abstract][Full Text] [Related]
14. Active nematics with anisotropic friction: the decisive role of the flow aligning parameter. Thijssen K; Metselaar L; Yeomans JM; Doostmohammadi A Soft Matter; 2020 Feb; 16(8):2065-2074. PubMed ID: 32003382 [TBL] [Abstract][Full Text] [Related]
15. Anisotropic Diffusion of Elongated Particles in Active Coherent Flows. Li D; Liu Y; Luo H; Jing G Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398928 [TBL] [Abstract][Full Text] [Related]
16. Kuramoto model with run-and-tumble dynamics. Frydel D Phys Rev E; 2021 Aug; 104(2-1):024203. PubMed ID: 34525604 [TBL] [Abstract][Full Text] [Related]
17. Translational and rotational dynamics of colloidal particles in suspension: effect of shear. Hernández-Contreras M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022317. PubMed ID: 24032842 [TBL] [Abstract][Full Text] [Related]
18. Ramifications of disorder on active particles in one dimension. Ben Dor Y; Woillez E; Kafri Y; Kardar M; Solon AP Phys Rev E; 2019 Nov; 100(5-1):052610. PubMed ID: 31869918 [TBL] [Abstract][Full Text] [Related]
20. Optimal run-and-tumble-based transportation of a Janus particle with active steering. Mano T; Delfau JB; Iwasawa J; Sano M Proc Natl Acad Sci U S A; 2017 Mar; 114(13):E2580-E2589. PubMed ID: 28292904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]