These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38226789)
1. Coupling Ferricyanide/Ferrocyanide Redox Mediated Recycling Spent LiFePO Jia X; Kang H; Hou G; Wu W; Lu S; Li Y; Wang Q; Qin W; Wu X Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202318248. PubMed ID: 38226789 [TBL] [Abstract][Full Text] [Related]
2. Coupling Glucose-Assisted Cu(I)/Cu(II) Redox with Electrochemical Hydrogen Production. Zhang Y; Zhou B; Wei Z; Zhou W; Wang D; Tian J; Wang T; Zhao S; Liu J; Tao L; Wang S Adv Mater; 2021 Dec; 33(48):e2104791. PubMed ID: 34561909 [TBL] [Abstract][Full Text] [Related]
3. Acid-free mechanochemical process to enhance the selective recycling of spent LiFePO Zhang Q; Fan E; Lin J; Sun S; Zhang X; Chen R; Wu F; Li L J Hazard Mater; 2023 Feb; 443(Pt A):130160. PubMed ID: 36283216 [TBL] [Abstract][Full Text] [Related]
4. Lithium Ferrocyanide Catholyte for High-Energy and Low-cost Aqueous Redox Flow Batteries. Li X; Yao Y; Liu C; Jia X; Jian J; Guo B; Lu S; Qin W; Wang Q; Wu X Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202304667. PubMed ID: 37081714 [TBL] [Abstract][Full Text] [Related]
5. Life Cycle of LiFePO4 Batteries: Production, Recycling, and Market Trends. Rostami H; Valio J; Tynjälä P; Lassi U; Suominen P Chemphyschem; 2024 Sep; ():e202400459. PubMed ID: 39264359 [TBL] [Abstract][Full Text] [Related]
6. Coupling redox flow desalination with lithium recovery from spent lithium-ion batteries. Shan W; Zi Y; Chen H; Li M; Luo M; Oo TZ; Lwin NW; Aung SH; Tang D; Ying G; Chen F; Chen Y Water Res; 2024 Mar; 252():121205. PubMed ID: 38301527 [TBL] [Abstract][Full Text] [Related]
7. Direct Regeneration of Degraded LiFePO Li C; Gong R; Zhang Y; Meng Q; Dong P Molecules; 2024 Jul; 29(14):. PubMed ID: 39064918 [TBL] [Abstract][Full Text] [Related]
8. Sulfion oxidation assisting self-powered hydrogen production system based on efficient catalysts from spent lithium-ion batteries. Wang B; Xiao X; Li J; Zhang M; Jiao M; Zheng Z; Li T; Zhang Q; Zhang X; Zhou G Proc Natl Acad Sci U S A; 2023 Dec; 120(52):e2317174120. PubMed ID: 38127984 [TBL] [Abstract][Full Text] [Related]
9. Redox-mediated decoupled seawater direct splitting for H Liu T; Lan C; Tang M; Li M; Xu Y; Yang H; Deng Q; Jiang W; Zhao Z; Wu Y; Xie H Nat Commun; 2024 Oct; 15(1):8874. PubMed ID: 39402055 [TBL] [Abstract][Full Text] [Related]
10. A Multifunctional Amino Acid Enables Direct Recycling of Spent LiFePO Tang D; Ji G; Wang J; Liang Z; Chen W; Ji H; Ma J; Liu S; Zhuang Z; Zhou G Adv Mater; 2024 Feb; 36(5):e2309722. PubMed ID: 38010273 [TBL] [Abstract][Full Text] [Related]
11. Research on Spent LiFePO Zhu L; Chen M Int J Environ Res Public Health; 2020 Nov; 17(23):. PubMed ID: 33261047 [TBL] [Abstract][Full Text] [Related]
12. Bifunctional Al-Doped Cobalt Ferrocyanide Nanocube Array for Energy-Saving Hydrogen Production via Urea Electrolysis. Gao X; Gao M; Yu X; Jin X; Ni G; Peng J Molecules; 2023 Oct; 28(20):. PubMed ID: 37894626 [TBL] [Abstract][Full Text] [Related]
13. Fluorine Substitution of TCNQ Alters the Redox-Driven Catalytic Pathway for the Ferricyanide-Thiosulfate Reaction. Alzubidi AE; Bond AM; Martin LL Chemphyschem; 2023 Oct; 24(20):e202300289. PubMed ID: 37876345 [TBL] [Abstract][Full Text] [Related]
14. Selective recovery of Li and FePO Kumar J; Shen X; Li B; Liu H; Zhao J Waste Manag; 2020 Jul; 113():32-40. PubMed ID: 32505109 [TBL] [Abstract][Full Text] [Related]
15. Acidic enol electrooxidation-coupled hydrogen production with ampere-level current density. Chen ZJ; Dong J; Wu J; Shao Q; Luo N; Xu M; Sun Y; Tang Y; Peng J; Cheng HM Nat Commun; 2023 Jul; 14(1):4210. PubMed ID: 37452034 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen Sulfide Splitting into Hydrogen and Sulfur through Off-Field Electrocatalysis. Wang Z; Wang QN; Ma W; Liu T; Zhang W; Zhou P; Li M; Liu X; Chang Q; Zheng H; Chang B; Li C Environ Sci Technol; 2024 Jun; 58(24):10515-10523. PubMed ID: 38622088 [TBL] [Abstract][Full Text] [Related]
17. A green and sustainable strategy toward lithium resources recycling from spent batteries. Xu J; Jin Y; Liu K; Lyu N; Zhang Z; Sun B; Jin Q; Lu H; Tian H; Guo X; Shanmukaraj D; Wu H; Li M; Armand M; Wang G Sci Adv; 2022 Oct; 8(40):eabq7948. PubMed ID: 36197980 [TBL] [Abstract][Full Text] [Related]
18. Energy-saving H Liu B; Wang G; Feng X; Dai L; Wen Z; Ci S Nanoscale; 2022 Sep; 14(35):12841-12848. PubMed ID: 36039893 [TBL] [Abstract][Full Text] [Related]
19. One-step selective separation and efficient recovery of valuable metals from mixed spent lithium batteries in the phosphoric acid system. Zhou X; Yang W; Liu X; Tang J; Su F; Li Z; Yang J; Ma Y Waste Manag; 2023 Jan; 155():53-64. PubMed ID: 36343600 [TBL] [Abstract][Full Text] [Related]
20. Self-Powered Hydrogen Production with Improved Energy Efficiency via Polysulfides Redox. Ren JT; Chen L; Wang HY; Tian W; Wang L; Sun M; Feng Y; Zhai SX; Yuan ZY ACS Nano; 2023 Dec; 17(24):25707-25720. PubMed ID: 38047808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]