These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38226794)

  • 21. Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps.
    Reyer A; Häßler M; Scherzer S; Huang S; Pedersen JT; Al-Rascheid KAS; Bamberg E; Palmgren M; Dreyer I; Nagel G; Hedrich R; Becker D
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20920-20925. PubMed ID: 32788371
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of cardiac optogenetics by vitamin A.
    Keshmiri Neghab H; Goliaei B; Saboury AA; Esmaeeli Djavid G; Pornour M; Hong J; Grusch M
    Biofactors; 2019 Nov; 45(6):983-990. PubMed ID: 31509323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leaky expression of channelrhodopsin-2 (ChR2) in Ai32 mouse lines.
    Prabhakar A; Vujovic D; Cui L; Olson W; Luo W
    PLoS One; 2019; 14(3):e0213326. PubMed ID: 30913225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An engineered channelrhodopsin optimized for axon terminal activation and circuit mapping.
    Hamada S; Nagase M; Yoshizawa T; Hagiwara A; Isomura Y; Watabe AM; Ohtsuka T
    Commun Biol; 2021 Apr; 4(1):461. PubMed ID: 33846537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural insights into ion conduction by channelrhodopsin 2.
    Volkov O; Kovalev K; Polovinkin V; Borshchevskiy V; Bamann C; Astashkin R; Marin E; Popov A; Balandin T; Willbold D; Büldt G; Bamberg E; Gordeliy V
    Science; 2017 Nov; 358(6366):. PubMed ID: 29170206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expanding the Optogenetics Toolkit by Topological Inversion of Rhodopsins.
    Brown J; Behnam R; Coddington L; Tervo DGR; Martin K; Proskurin M; Kuleshova E; Park J; Phillips J; Bergs ACF; Gottschalk A; Dudman JT; Karpova AY
    Cell; 2018 Nov; 175(4):1131-1140.e11. PubMed ID: 30343901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rhodopsin optogenetic toolbox v2.0 for light-sensitive excitation and inhibition in Caenorhabditis elegans.
    Bergs A; Schultheis C; Fischer E; Tsunoda SP; Erbguth K; Husson SJ; Govorunova E; Spudich JL; Nagel G; Gottschalk A; Liewald JF
    PLoS One; 2018; 13(2):e0191802. PubMed ID: 29389997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stimulation of medial amygdala GABA neurons with kinetically different channelrhodopsins yields opposite behavioral outcomes.
    Baleisyte A; Schneggenburger R; Kochubey O
    Cell Rep; 2022 May; 39(8):110850. PubMed ID: 35613578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure-Function Relationship of Channelrhodopsins.
    Kato HE
    Adv Exp Med Biol; 2021; 1293():35-53. PubMed ID: 33398806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optogenetic activation of muscle contraction
    Ganji E; Chan CS; Ward CW; Killian ML
    Connect Tissue Res; 2021 Jan; 62(1):15-23. PubMed ID: 32777957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Delivery of continuously-varying stimuli using channelrhodopsin-2.
    Tchumatchenko T; Newman JP; Fong MF; Potter SM
    Front Neural Circuits; 2013; 7():184. PubMed ID: 24367294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optogenetic Modulation of Ion Channels by Photoreceptive Proteins.
    Tsukamoto H; Furutani Y
    Adv Exp Med Biol; 2021; 1293():73-88. PubMed ID: 33398808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rhodopsin-Based Optogenetics: Basics and Applications.
    Alekseev A; Gordeliy V; Bamberg E
    Methods Mol Biol; 2022; 2501():71-100. PubMed ID: 35857223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Redox-Modifying Agents on the Activity of Channelrhodopsin-2.
    Wu BM; Leng TD; Inoue K; Li J; Xiong ZG
    CNS Neurosci Ther; 2017 Mar; 23(3):216-221. PubMed ID: 27917616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex.
    Miyashita T; Shao YR; Chung J; Pourzia O; Feldman DE
    Front Neural Circuits; 2013; 7():8. PubMed ID: 23386813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chronic activation of the D156A point mutant of Channelrhodopsin-2 signals apoptotic cell death: the good and the bad.
    Perny M; Muri L; Dawson H; Kleinlogel S
    Cell Death Dis; 2016 Nov; 7(11):e2447. PubMed ID: 27809305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel optogenetics tool: Gt_CCR4, a light-gated cation channel with high reactivity to weak light.
    Hososhima S; Shigemura S; Kandori H; Tsunoda SP
    Biophys Rev; 2020 Apr; 12(2):453-459. PubMed ID: 32166612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bicistronic Construct for Optogenetic Prosthesis of Ganglion Cell Receptive Field of Degenerative Retina.
    Petrovskaya LE; Roshchin MV; Smirnova GR; Kolotova DE; Balaban PM; Ostrovsky MA; Malyshev AY
    Dokl Biochem Biophys; 2019 May; 486(1):184-186. PubMed ID: 31367817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optogenetic Studies of Mitochondria.
    Chen K; Ernst P; Liu XM; Zhou L
    Methods Mol Biol; 2022; 2501():311-324. PubMed ID: 35857235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.