These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 38226973)
1. Identifying Antitubercular Peptides via Deep Forest Architecture with Effective Feature Representation. Yao L; Guan J; Li W; Chung CR; Deng J; Chiang YC; Lee TY Anal Chem; 2024 Jan; 96(4):1538-1546. PubMed ID: 38226973 [TBL] [Abstract][Full Text] [Related]
2. AMPActiPred: A three-stage framework for predicting antibacterial peptides and activity levels with deep forest. Yao L; Guan J; Xie P; Chung CR; Deng J; Huang Y; Chiang YC; Lee TY Protein Sci; 2024 Jun; 33(6):e5006. PubMed ID: 38723168 [TBL] [Abstract][Full Text] [Related]
3. Accelerating the Discovery of Anticancer Peptides through Deep Forest Architecture with Deep Graphical Representation. Yao L; Li W; Zhang Y; Deng J; Pang Y; Huang Y; Chung CR; Yu J; Chiang YC; Lee TY Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901759 [TBL] [Abstract][Full Text] [Related]
4. Identification of active molecules against Mycobacterium tuberculosis through machine learning. Ye Q; Chai X; Jiang D; Yang L; Shen C; Zhang X; Li D; Cao D; Hou T Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822874 [TBL] [Abstract][Full Text] [Related]
6. [Development of antituberculous drugs: current status and future prospects]. Tomioka H; Namba K Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921 [TBL] [Abstract][Full Text] [Related]
7. iAtbP-Hyb-EnC: Prediction of antitubercular peptides via heterogeneous feature representation and genetic algorithm based ensemble learning model. Akbar S; Ahmad A; Hayat M; Rehman AU; Khan S; Ali F Comput Biol Med; 2021 Oct; 137():104778. PubMed ID: 34481183 [TBL] [Abstract][Full Text] [Related]
8. Accurate and rapid prediction of tuberculosis drug resistance from genome sequence data using traditional machine learning algorithms and CNN. Kuang X; Wang F; Hernandez KM; Zhang Z; Grossman RL Sci Rep; 2022 Feb; 12(1):2427. PubMed ID: 35165358 [TBL] [Abstract][Full Text] [Related]
9. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship. Tomioka H Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755 [TBL] [Abstract][Full Text] [Related]
10. TB-DROP: deep learning-based drug resistance prediction of Mycobacterium tuberculosis utilizing whole genome mutations. Wang Y; Jiang Z; Liang P; Liu Z; Cai H; Sun Q BMC Genomics; 2024 Feb; 25(1):167. PubMed ID: 38347478 [TBL] [Abstract][Full Text] [Related]
11. A two-stage computational framework for identifying antiviral peptides and their functional types based on contrastive learning and multi-feature fusion strategy. Guan J; Yao L; Xie P; Chung CR; Huang Y; Chiang YC; Lee TY Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38706321 [TBL] [Abstract][Full Text] [Related]
12. Neoteric advancement in TB drugs and an overview on the anti-tubercular role of peptides through computational approaches. Khusro A; Aarti C; Barbabosa-Pliego A; Salem AZM Microb Pathog; 2018 Jan; 114():80-89. PubMed ID: 29174699 [TBL] [Abstract][Full Text] [Related]
13. DeepAFP: An effective computational framework for identifying antifungal peptides based on deep learning. Yao L; Zhang Y; Li W; Chung CR; Guan J; Zhang W; Chiang YC; Lee TY Protein Sci; 2023 Oct; 32(10):e4758. PubMed ID: 37595093 [TBL] [Abstract][Full Text] [Related]
14. Feature weighted models to address lineage dependency in drug-resistance prediction from Mycobacterium tuberculosis genome sequences. Billows N; Phelan JE; Xia D; Peng Y; Clark TG; Chang YM Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37428143 [TBL] [Abstract][Full Text] [Related]
15. UniDL4BioPep: a universal deep learning architecture for binary classification in peptide bioactivity. Du Z; Ding X; Xu Y; Li Y Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37020337 [TBL] [Abstract][Full Text] [Related]
16. Opportunities and challenges of using five-membered ring compounds as promising antitubercular agents. Yan M; Xu L; Wang Y; Wan J; Liu T; Liu W; Wan Y; Zhang B; Wang R; Li Q Drug Dev Res; 2020 Jun; 81(4):402-418. PubMed ID: 31904877 [TBL] [Abstract][Full Text] [Related]
17. Antimicrobial Peptides as Immunomodulators and Antimycobacterial Agents to Combat Mycobacterium tuberculosis: a Critical Review. R PA; Anbarasu A Probiotics Antimicrob Proteins; 2023 Dec; 15(6):1539-1566. PubMed ID: 36576687 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds. Ventura C; Latino DA; Martins F Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731 [TBL] [Abstract][Full Text] [Related]
19. Harnessing Biological Insight to Accelerate Tuberculosis Drug Discovery. de Wet TJ; Warner DF; Mizrahi V Acc Chem Res; 2019 Aug; 52(8):2340-2348. PubMed ID: 31361123 [TBL] [Abstract][Full Text] [Related]
20. Beyond multidrug resistance: Leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction. Chen ML; Doddi A; Royer J; Freschi L; Schito M; Ezewudo M; Kohane IS; Beam A; Farhat M EBioMedicine; 2019 May; 43():356-369. PubMed ID: 31047860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]