These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38227248)

  • 1. Simplified model for non-line-of-sight optical camera communication with a simple patterned reflective surface.
    He Z; Chen J; Yu C
    Appl Opt; 2024 Jan; 63(2):506-514. PubMed ID: 38227248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical camera communication (OCC) using a laser-diode coupled optical-diffusing fiber (ODF) and rolling shutter image sensor.
    Tsai DC; Chang YH; Chow CW; Liu Y; Yeh CH; Peng CW; Hsu LS
    Opt Express; 2022 May; 30(10):16069-16077. PubMed ID: 36221459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curved OLED-based NLOS optical camera communications links.
    Teli SR; Matus V; Aguiar CL; Perez-Jimenez R; Ghassemlooy Z; Zvanovec S
    Appl Opt; 2023 Oct; 62(30):8204-8210. PubMed ID: 38038119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confidential multiple-input multiple-output optical camera communication aided by a two-dimensional pilot.
    Hu SS; Chi XF; Ji FL; Chen SQ; Hu GY
    Opt Lett; 2024 May; 49(10):2757-2760. PubMed ID: 38748154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-line-of-sight optical camera communications based on CPWM and a convolutional neural network.
    Wan X; Lin B; Ghassemlooy Z; Huang T; Luo J; Ding Y
    Appl Opt; 2023 Oct; 62(28):7367-7372. PubMed ID: 37855504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-line-of-sight optical camera communication aided by a pilot.
    Chen SQ; Chi XF; Li TY
    Opt Lett; 2021 Jul; 46(14):3348-3351. PubMed ID: 34264210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PAM4 rolling-shutter demodulation using a pixel-per-symbol labeling neural network for optical camera communications.
    Lin YS; Chow CW; Liu Y; Chang YH; Lin KH; Wang YC; Chen YY
    Opt Express; 2021 Sep; 29(20):31680-31688. PubMed ID: 34615256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Camera Communications for IoT-Rolling-Shutter Based MIMO Scheme with Grouped LED Array Transmitter.
    Teli SR; Matus V; Zvanovec S; Perez-Jimenez R; Vitek S; Ghassemlooy Z
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32545751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust OCC System Optimized for Low-Frame-Rate Receivers.
    Dobre RA; Preda RO; Badea RA
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unmanned-aerial-vehicle based optical camera communication system using light-diffusing fiber and rolling-shutter image-sensor.
    Chang YH; Tsai SY; Chow CW; Wang CC; Tsai DC; Liu Y; Yeh CH
    Opt Express; 2023 May; 31(11):18670-18679. PubMed ID: 37381574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some practical constraints and solutions for optical camera communication.
    Liu W; Xu Z
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190191. PubMed ID: 32114916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Implementation of a Hybrid Optical Camera Communication System for Indoor Applications.
    Nguyen H; Le NT; Le DTA; Jang YM
    Sensors (Basel); 2024 Jan; 24(1):. PubMed ID: 38203162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long distance non-line-of-sight (NLOS) visible light signal detection based on rolling-shutter-patterning of mobile-phone camera.
    Wang WC; Chow CW; Wei LY; Liu Y; Yeh CH
    Opt Express; 2017 May; 25(9):10103-10108. PubMed ID: 28468385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parametric modeling and experimental measurement of rolling shutter characteristics for optical camera communication using undersampled modulation.
    Dong K; Ke X; Zhang X; Wang M
    Appl Opt; 2022 Sep; 61(27):7838-7845. PubMed ID: 36255906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 47-kbit/s RGB-LED-based optical camera communication based on 2D-CNN and XOR-based data loss compensation.
    Liu L; Deng R; Chen LK
    Opt Express; 2019 Nov; 27(23):33840-33846. PubMed ID: 31878443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-column pixel neural network scheme for modulation format shifting based optical camera communications.
    Shi J; He J; Yan X
    Opt Lett; 2023 Jan; 48(1):85-88. PubMed ID: 36563375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Speed Extraction of Regions of Interest in Optical Camera Communication Enabled by Grid Virtual Division.
    Hu X; Zhang P; Sun Y; Deng X; Yang Y; Chen L
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Implementation of a Novel Compatible Encoding Scheme in the Time Domain for Image Sensor Communication.
    Nguyen T; Hossain MA; Jang YM
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27213396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the angular distortion impact on vehicular optical camera communication (OCC) systems.
    Liu A; Shi W; Safari M; Liu W
    Opt Express; 2024 May; 32(11):19697-19715. PubMed ID: 38859099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavefront shaping for multi-user line-of-sight and non-line-of-sight visible light communication.
    Zhou X; Shi J; Chi N; Shen C; Li Z
    Opt Express; 2023 Jul; 31(16):25359-25371. PubMed ID: 37710425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.