BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 3822764)

  • 1. Coupling between sodium and succinate transport across renal brush border membrane vesicles.
    Hirayama B; Wright EM
    Pflugers Arch; 1986; 407 Suppl 2():S174-9. PubMed ID: 3822764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetry of the Na+-succinate cotransporter in rabbit renal brush-border membranes.
    Hirayama B; Wright EM
    Biochim Biophys Acta; 1984 Aug; 775(1):17-21. PubMed ID: 6466657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of sodium succinate cotransport across renal brush-border membranes.
    Wright SH; Hirayama B; Kaunitz JD; Kippen I; Wright EM
    J Biol Chem; 1983 May; 258(9):5456-62. PubMed ID: 6853527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium-dependent succinate transport in renal outer cortical brush border membrane vesicles.
    Fukuhara Y; Turner RJ
    Am J Physiol; 1983 Sep; 245(3):F374-81. PubMed ID: 6225342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dicarboxylate transport in renal basolateral and brush-border membrane vesicles.
    Kim YK; Jung JS; Lee SH
    Can J Physiol Pharmacol; 1992 Jan; 70(1):106-12. PubMed ID: 1581843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stoichiometry of Na+-succinate cotransport in renal brush-border membranes.
    Wright SH; Kippen I; Wright EM
    J Biol Chem; 1982 Feb; 257(4):1773-8. PubMed ID: 7056744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiology of succinate transport across rabbit renal brush border membranes.
    Schell RE; Wright EM
    J Physiol; 1985 Mar; 360():95-104. PubMed ID: 3989724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dicarboxylate transport in human placental brush-border membrane vesicles.
    Ogin C; Grassl SM
    Biochim Biophys Acta; 1989 Apr; 980(2):248-54. PubMed ID: 2930791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of renal brush-border Na+-cotransport systems to anions.
    Levine R; Hirayama B; Wright EM
    Biochim Biophys Acta; 1984 Jan; 769(2):508-10. PubMed ID: 6696897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-gradient-driven, high-affinity, uphill transport of succinate in human placental brush-border membrane vesicles.
    Ganapathy V; Ganapathy ME; Tiruppathi C; Miyamoto Y; Mahesh VB; Leibach FH
    Biochem J; 1988 Jan; 249(1):179-84. PubMed ID: 3342005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Succinate and citrate transport in renal basolateral and brush-border membranes.
    Wright SH; Wunz TM
    Am J Physiol; 1987 Sep; 253(3 Pt 2):F432-9. PubMed ID: 3631279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p-Aminohippurate/2-oxoglutarate exchange in bovine renal brush-border and basolateral membrane vesicles.
    Schmitt C; Burckhardt G
    Pflugers Arch; 1993 May; 423(3-4):280-90. PubMed ID: 8321632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of sodium-dependent and sodium-independent nucleoside transport systems in rabbit brush-border and basolateral plasma-membrane vesicles from the renal outer cortex.
    Williams TC; Doherty AJ; Griffith DA; Jarvis SM
    Biochem J; 1989 Nov; 264(1):223-31. PubMed ID: 2604712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium-dependent sulfate transport in renal outer cortical brush border membrane vesicles.
    Turner RJ
    Am J Physiol; 1984 Nov; 247(5 Pt 2):F793-8. PubMed ID: 6093591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+-independent L-arginine transport in rabbit renal brush border membrane vesicles.
    Hammerman MR
    Biochim Biophys Acta; 1982 Feb; 685(1):71-7. PubMed ID: 7059593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased sodium dependent D-glucose transport across renal brush-border membranes in cis-diamminedichloride platinum induced acute renal failure.
    Yanase M; Uyama O; Nakanishi T; Shiratsuki N; Sugita M
    Ren Fail; 1992; 14(1):23-30. PubMed ID: 1561386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of renal ischaemia on organic compound transport in rabbit kidney proximal tubule.
    Kim YK; Woo JS; Kim YH; Jung JS; Kim BS; Lee SH
    Pharmacol Toxicol; 1995 Aug; 77(2):121-9. PubMed ID: 8584502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotin uptake mechanisms in brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex.
    Podevin RA; Barbarat B
    Biochim Biophys Acta; 1986 Apr; 856(3):471-81. PubMed ID: 3964692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pH on the kinetics of Na+-dependent phosphate transport in rat renal brush-border membranes.
    Bindels RJ; van den Broek LA; van Os CH
    Biochim Biophys Acta; 1987 Feb; 897(1):83-92. PubMed ID: 3099845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+- and K+-dependent uridine transport in rat renal brush-border membrane vesicles.
    Lee CW; Cheeseman CI; Jarvis SM
    Biochim Biophys Acta; 1988 Jul; 942(1):139-49. PubMed ID: 3382655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.