These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38227651)

  • 1. Fast quantum interference of a nanoparticle via optical potential control.
    Neumeier L; Ciampini MA; Romero-Isart O; Aspelmeyer M; Kiesel N
    Proc Natl Acad Sci U S A; 2024 Jan; 121(4):e2306953121. PubMed ID: 38227651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum control of a nanoparticle optically levitated in cryogenic free space.
    Tebbenjohanns F; Mattana ML; Rossi M; Frimmer M; Novotny L
    Nature; 2021 Jul; 595(7867):378-382. PubMed ID: 34262214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-field interferometry of a free-falling nanoparticle from a point-like source.
    Bateman J; Nimmrichter S; Hornberger K; Ulbricht H
    Nat Commun; 2014 Sep; 5():4788. PubMed ID: 25179560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between an Optically Levitated Nanoparticle and Its Thermal Image: Internal Thermometry via Displacement Sensing.
    Agrenius T; Gonzalez-Ballestero C; Maurer P; Romero-Isart O
    Phys Rev Lett; 2023 Mar; 130(9):093601. PubMed ID: 36930923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time optimal quantum control of mechanical motion at room temperature.
    Magrini L; Rosenzweig P; Bach C; Deutschmann-Olek A; Hofer SG; Hong S; Kiesel N; Kugi A; Aspelmeyer M
    Nature; 2021 Jul; 595(7867):373-377. PubMed ID: 34262213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooling of a levitated nanoparticle to the motional quantum ground state.
    Delić U; Reisenbauer M; Dare K; Grass D; Vuletić V; Kiesel N; Aspelmeyer M
    Science; 2020 Feb; 367(6480):892-895. PubMed ID: 32001522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavity cooling of an optically levitated submicron particle.
    Kiesel N; Blaser F; Delić U; Grass D; Kaltenbaek R; Aspelmeyer M
    Proc Natl Acad Sci U S A; 2013 Aug; 110(35):14180-5. PubMed ID: 23940352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large Quantum Delocalization of a Levitated Nanoparticle Using Optimal Control: Applications for Force Sensing and Entangling via Weak Forces.
    Weiss T; Roda-Llordes M; Torrontegui E; Aspelmeyer M; Romero-Isart O
    Phys Rev Lett; 2021 Jul; 127(2):023601. PubMed ID: 34296896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cold Damping of an Optically Levitated Nanoparticle to Microkelvin Temperatures.
    Tebbenjohanns F; Frimmer M; Militaru A; Jain V; Novotny L
    Phys Rev Lett; 2019 Jun; 122(22):223601. PubMed ID: 31283294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong optomechanical coupling at room temperature by coherent scattering.
    de Los Ríos Sommer A; Meyer N; Quidant R
    Nat Commun; 2021 Jan; 12(1):276. PubMed ID: 33436586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Torsional Optomechanics of a Levitated Nonspherical Nanoparticle.
    Hoang TM; Ma Y; Ahn J; Bang J; Robicheaux F; Yin ZQ; Li T
    Phys Rev Lett; 2016 Sep; 117(12):123604. PubMed ID: 27689273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optomechanics with levitated particles.
    Millen J; Monteiro TS; Pettit R; Vamivakas AN
    Rep Prog Phys; 2020 Feb; 83(2):026401. PubMed ID: 31825901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum superposition at the half-metre scale.
    Kovachy T; Asenbaum P; Overstreet C; Donnelly CA; Dickerson SM; Sugarbaker A; Hogan JM; Kasevich MA
    Nature; 2015 Dec; 528(7583):530-3. PubMed ID: 26701053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Squeezed Light from a Levitated Nanoparticle at Room Temperature.
    Magrini L; Camarena-Chávez VA; Bach C; Johnson A; Aspelmeyer M
    Phys Rev Lett; 2022 Jul; 129(5):053601. PubMed ID: 35960562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large quantum superpositions and interference of massive nanometer-sized objects.
    Romero-Isart O; Pflanzer AC; Blaser F; Kaltenbaek R; Kiesel N; Aspelmeyer M; Cirac JI
    Phys Rev Lett; 2011 Jul; 107(2):020405. PubMed ID: 21797585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical Squeezing via Unstable Dynamics in a Microcavity.
    Kustura K; Gonzalez-Ballestero C; Sommer ALR; Meyer N; Quidant R; Romero-Isart O
    Phys Rev Lett; 2022 Apr; 128(14):143601. PubMed ID: 35476467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macroscopic Quantum Superpositions via Dynamics in a Wide Double-Well Potential.
    Roda-Llordes M; Riera-Campeny A; Candoli D; Grochowski PT; Romero-Isart O
    Phys Rev Lett; 2024 Jan; 132(2):023601. PubMed ID: 38277591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissipative optomechanics in a Michelson-Sagnac interferometer.
    Xuereb A; Schnabel R; Hammerer K
    Phys Rev Lett; 2011 Nov; 107(21):213604. PubMed ID: 22181881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalable all-optical cold damping of levitated nanoparticles.
    Vijayan J; Zhang Z; Piotrowski J; Windey D; van der Laan F; Frimmer M; Novotny L
    Nat Nanotechnol; 2023 Jan; 18(1):49-54. PubMed ID: 36411375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavity-Based 3D Cooling of a Levitated Nanoparticle via Coherent Scattering.
    Windey D; Gonzalez-Ballestero C; Maurer P; Novotny L; Romero-Isart O; Reimann R
    Phys Rev Lett; 2019 Mar; 122(12):123601. PubMed ID: 30978044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.