These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38227742)
1. Field Quantification of Hydroxyl Radicals by Flow-Injection Chemiluminescence Analysis with a Portable Device. Yu W; Zheng X; Tan M; Wang J; Wu B; Ma J; Pan Y; Chen B; Chu C Environ Sci Technol; 2024 Feb; 58(6):2808-2816. PubMed ID: 38227742 [TBL] [Abstract][Full Text] [Related]
2. Intrinsic chemiluminescence production from the degradation of haloaromatic pollutants during environmentally-friendly advanced oxidation processes: Mechanism, structure-activity relationship and potential applications. Zhu B; Shen C; Gao H; Zhu L; Shao J; Mao L J Environ Sci (China); 2017 Dec; 62():68-83. PubMed ID: 29289294 [TBL] [Abstract][Full Text] [Related]
3. Phthalhydrazide chemiluminescence method for determination of hydroxyl radical production: modifications and adaptations for use in natural systems. Miller CJ; Rose AL; Waite TD Anal Chem; 2011 Jan; 83(1):261-8. PubMed ID: 21142069 [TBL] [Abstract][Full Text] [Related]
4. Unprecedented hydroxyl radical-dependent two-step chemiluminescence production by polyhalogenated quinoid carcinogens and H2O2. Zhu BZ; Mao L; Huang CH; Qin H; Fan RM; Kalyanaraman B; Zhu JG Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16046-51. PubMed ID: 22988069 [TBL] [Abstract][Full Text] [Related]
5. Rapid and specific detection of hydroxyl radical using an ultraweak chemiluminescence analyzer and a low-level chemiluminescence emitter: application to hydroxyl radical-scavenging ability of aqueous extracts of Food constituents. Tsai CH; Stern A; Chiou JF; Chern CL; Liu TZ J Agric Food Chem; 2001 May; 49(5):2137-41. PubMed ID: 11368567 [TBL] [Abstract][Full Text] [Related]
6. Development of an Evaluation Method for Hydroxyl Radical Scavenging Activities Using Sequential Injection Analysis with Chemiluminescence Detection. Miyamoto A; Nakano S; Nagai K; Kishikawa N; Ohyama K; Aoyama T; Matsumoto Y; Kuroda N Anal Sci; 2017; 33(6):697-701. PubMed ID: 28603188 [TBL] [Abstract][Full Text] [Related]
7. Water Vapor Condensation on Iron Minerals Spontaneously Produces Hydroxyl Radical. Pan Y; Zheng X; Zhao G; Rao Z; Yu W; Chen B; Chu C Environ Sci Technol; 2023 Jun; 57(23):8610-8616. PubMed ID: 37226678 [TBL] [Abstract][Full Text] [Related]
8. Online detection of reactive oxygen species in ultraviolet (UV)-Irradiated nano-TiO2 suspensions by continuous flow chemiluminescence. Wang D; Zhao L; Guo LH; Zhang H Anal Chem; 2014 Nov; 86(21):10535-9. PubMed ID: 25275618 [TBL] [Abstract][Full Text] [Related]
9. A new method for hydroxyl radical detection by chemiluminescence of flue-cured tobacco extracts. Wang D; Yu W; Pang X; Cao J; Qiu J; Kong F Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():436-439. PubMed ID: 29966897 [TBL] [Abstract][Full Text] [Related]
10. Quantitative characterization of hydroxyl radical generation in a goethite-catalyzed Fenton-like reaction. Lin ZR; Zhao L; Dong YH Chemosphere; 2015 Dec; 141():7-12. PubMed ID: 26069944 [TBL] [Abstract][Full Text] [Related]
11. Hydroxyl radical scavenging factor measurement using a fluorescence excitation-emission matrix and parallel factor analysis in ultraviolet advanced oxidation processes. Hwang TM; Nam SH; Lee J; Koo JW; Kim E; Kwon M Chemosphere; 2020 Nov; 259():127396. PubMed ID: 32645596 [TBL] [Abstract][Full Text] [Related]
12. Molecular mechanism for the unusual enhancement of the second-step chemiluminescence production from the carcinogenic tetrabromohydroquinone and H Wang ZH; Huang CH; Liu ZS; Mao L; Zhu BZ J Environ Sci (China); 2024 Jul; 141():330-342. PubMed ID: 38408832 [TBL] [Abstract][Full Text] [Related]
13. Investigation on the interaction between dihydroxybenzene and Fe3+- H2O2-Rh6G system based on enhancing chemiluminescence. He D; Zhang Z; He C Luminescence; 2006; 21(1):15-9. PubMed ID: 16078305 [TBL] [Abstract][Full Text] [Related]
14. Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H Ding X; Gutierrez L; Croue JP; Li M; Wang L; Wang Y Chemosphere; 2020 Aug; 253():126655. PubMed ID: 32302899 [TBL] [Abstract][Full Text] [Related]
15. Transient Chemiluminescence Assay for Real-Time Monitoring of the Processes of SO Sun M; Song H; Xie X; Yang W; Su Y; Lv Y Environ Sci Technol; 2022 Mar; 56(5):3170-3180. PubMed ID: 35170961 [TBL] [Abstract][Full Text] [Related]
16. Highly Sensitive Surface-Enhanced Raman Scattering Detection of Hydroxyl Radicals in Water Microdroplets Using Phthalhydrazide/Ag Nanoparticles Nanosensor. Chao S; Valsecchi C; Sun J; Shao H; Li X; Tang C; Fan M Environ Sci Technol; 2024 Sep; 58(37):16497-16506. PubMed ID: 39114886 [TBL] [Abstract][Full Text] [Related]
17. Modeling the radical chemistry in an oxidation flow reactor: radical formation and recycling, sensitivities, and the OH exposure estimation equation. Li R; Palm BB; Ortega AM; Hlywiak J; Hu W; Peng Z; Day DA; Knote C; Brune WH; de Gouw JA; Jimenez JL J Phys Chem A; 2015 May; 119(19):4418-32. PubMed ID: 25789976 [TBL] [Abstract][Full Text] [Related]
18. Hydroxyl radical concentration profile in photo-Fenton oxidation process: generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II. Maezono T; Tokumura M; Sekine M; Kawase Y Chemosphere; 2011 Mar; 82(10):1422-30. PubMed ID: 21146853 [TBL] [Abstract][Full Text] [Related]
19. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs). Yang Y; Pignatello JJ; Ma J; Mitch WA Environ Sci Technol; 2014 Feb; 48(4):2344-51. PubMed ID: 24479380 [TBL] [Abstract][Full Text] [Related]
20. Chemiluminescence determination of metformin based on hydroxyl radical reaction and molecularly imprinted polymer on-line enrichment. He C; Zhang Z; He D; Xiong Y Anal Bioanal Chem; 2006 May; 385(1):128-33. PubMed ID: 16583208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]