BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38227791)

  • 1. GAFF-Based Polarizable Force Field Development and Validation for Ionic Liquids.
    Wang N; Maginn EJ
    J Phys Chem B; 2024 Jan; 128(3):871-881. PubMed ID: 38227791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transferable, Polarizable Force Field for Ionic Liquids.
    Goloviznina K; Canongia Lopes JN; Costa Gomes M; Pádua AAH
    J Chem Theory Comput; 2019 Nov; 15(11):5858-5871. PubMed ID: 31525922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force fields for studying the structure and dynamics of ionic liquids: a critical review of recent developments.
    Dommert F; Wendler K; Berger R; Delle Site L; Holm C
    Chemphyschem; 2012 May; 13(7):1625-37. PubMed ID: 22344944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current Status of AMOEBA-IL: A Multipolar/Polarizable Force Field for Ionic Liquids.
    Vázquez-Montelongo EA; Vázquez-Cervantes JE; Cisneros GA
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31973103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved classical united-atom force field for imidazolium-based ionic liquids: tetrafluoroborate, hexafluorophosphate, methylsulfate, trifluoromethylsulfonate, acetate, trifluoroacetate, and bis(trifluoromethylsulfonyl)amide.
    Zhong X; Liu Z; Cao D
    J Phys Chem B; 2011 Aug; 115(33):10027-40. PubMed ID: 21751818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does Explicit Polarizability Improve Molecular Dynamics Predictions of Glass Transition Temperatures of Ionic Liquids?
    Klajmon M; Červinka C
    J Phys Chem B; 2022 Mar; 126(9):2005-2013. PubMed ID: 35195429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of Organic Liquids when Simulated with Long-Range Lennard-Jones Interactions.
    Fischer NM; van Maaren PJ; Ditz JC; Yildirim A; van der Spoel D
    J Chem Theory Comput; 2015 Jul; 11(7):2938-44. PubMed ID: 26575731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force Fields for Small Molecules.
    Lin FY; MacKerell AD
    Methods Mol Biol; 2019; 2022():21-54. PubMed ID: 31396898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of polarization on structural, thermodynamic, and dynamic properties of ionic liquids obtained from molecular dynamics simulations.
    Bedrov D; Borodin O; Li Z; Smith GD
    J Phys Chem B; 2010 Apr; 114(15):4984-97. PubMed ID: 20337454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Polarizability on the Structure, Dynamic Characteristics, and Ion-Transport Mechanisms in Polymeric Ionic Liquids.
    Zhang Z; Zofchak E; Krajniak J; Ganesan V
    J Phys Chem B; 2022 Apr; 126(13):2583-2592. PubMed ID: 35349298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explicit polarization: a quantum mechanical framework for developing next generation force fields.
    Gao J; Truhlar DG; Wang Y; Mazack MJ; Löffler P; Provorse MR; Rehak P
    Acc Chem Res; 2014 Sep; 47(9):2837-45. PubMed ID: 25098651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global Optimization of the Lennard-Jones Parameters for the Drude Polarizable Force Field.
    Rupakheti CR; MacKerell AD; Roux B
    J Chem Theory Comput; 2021 Nov; 17(11):7085-7095. PubMed ID: 34609863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids.
    Sprenger KG; Jaeger VW; Pfaendtner J
    J Phys Chem B; 2015 May; 119(18):5882-95. PubMed ID: 25853313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular simulations of imidazolium-based tricyanomethanide ionic liquids using an optimized classical force field.
    Vergadou N; Androulaki E; Hill JR; Economou IG
    Phys Chem Chem Phys; 2016 Mar; 18(9):6850-60. PubMed ID: 26878611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between Ab Initio Molecular Dynamics and OPLS-Based Force Fields for Ionic Liquid Solvent Organization.
    Yue K; Doherty B; Acevedo O
    J Phys Chem B; 2022 Jun; 126(21):3908-3919. PubMed ID: 35594504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonpolarizable Force Fields through the Self-Consistent Modeling Scheme with MD and DFT Methods: From Ionic Liquids to Self-Assembled Ionic Liquid Crystals.
    Ishii Y; Matubayasi N; Washizu H
    J Phys Chem B; 2022 Jun; 126(24):4611-4622. PubMed ID: 35698025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant.
    Caleman C; van Maaren PJ; Hong M; Hub JS; Costa LT; van der Spoel D
    J Chem Theory Comput; 2012 Jan; 8(1):61-74. PubMed ID: 22241968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of octanol-water partition coefficients for the SAMPL6-[Formula: see text] molecules using molecular dynamics simulations with OPLS-AA, AMBER and CHARMM force fields.
    Fan S; Iorga BI; Beckstein O
    J Comput Aided Mol Des; 2020 May; 34(5):543-560. PubMed ID: 31960254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does Explicit Polarizability Improve Simulations of Phase Behavior of Ionic Liquids?
    Klajmon M; Červinka C
    J Chem Theory Comput; 2021 Oct; 17(10):6225-6239. PubMed ID: 34520200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of GAFF and OPLS Force Fields for Urea: Crystal and Aqueous Solution Properties.
    Anker S; McKechnie D; Mulheran P; Sefcik J; Johnston K
    Cryst Growth Des; 2024 Jan; 24(1):143-158. PubMed ID: 38188266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.