BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38227816)

  • 1. Microemulsion-Assisted Self-Assembly of Indium Porphyrin Photosensitizers with Enhanced Photodynamic Therapy.
    Yang L; Liu Y; Ren X; Jia R; Si L; Bao J; Shi Y; Sun J; Zhong Y; Duan PC; Yang X; Zhu R; Jia Y; Bai F
    ACS Nano; 2024 Jan; 18(4):3161-3172. PubMed ID: 38227816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New porphyrin photosensitizers-Synthesis, singlet oxygen yield, photophysical properties and application in PDT.
    Wang X; Lv H; Sun Y; Zu G; Zhang X; Song Y; Zhao F; Wang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121447. PubMed ID: 35689847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photophysical Characterization and in Vitro Phototoxicity Evaluation of 5,10,15,20-Tetra(quinolin-2-yl)porphyrin as a Potential Sensitizer for Photodynamic Therapy.
    Costa LD; e Silva Jde A; Fonseca SM; Arranja CT; Urbano AM; Sobral AJ
    Molecules; 2016 Mar; 21(4):439. PubMed ID: 27043519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bromoporphyrins as promising anti-tumor photosensitizers in vitro.
    Li MY; Mi L; Namulinda T; Yan YJ; Zhou XP; Chen ZL
    Photochem Photobiol Sci; 2023 Feb; 22(2):427-439. PubMed ID: 36344865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biological activities of 5,15-diaryl-10,20-dihalogeno porphyrins for photodynamic therapy.
    Li MY; Mi L; Meerovich G; Soe TW; Chen T; Than NN; Yan YJ; Chen ZL
    J Cancer Res Clin Oncol; 2022 Sep; 148(9):2335-2346. PubMed ID: 35522290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the Efficacy of Photodynamic Therapy through a Porphyrin/POSS Alternating Copolymer.
    Jin J; Zhu Y; Zhang Z; Zhang W
    Angew Chem Int Ed Engl; 2018 Dec; 57(50):16354-16358. PubMed ID: 30318668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G-Quadruplex/Porphyrin Composite Photosensitizer: A Facile Way to Promote Absorption Redshift and Photodynamic Therapy Efficacy.
    Cheng M; Cui YX; Wang J; Zhang J; Zhu LN; Kong DM
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13158-13167. PubMed ID: 30901194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(photosensitizer) Nanoparticles for Enhanced in Vivo Photodynamic Therapy by Interrupting the π-π Stacking and Extending Circulation Time.
    Zheng N; Zhang Z; Kuang J; Wang C; Zheng Y; Lu Q; Bai Y; Li Y; Wang A; Song W
    ACS Appl Mater Interfaces; 2019 May; 11(20):18224-18232. PubMed ID: 31046231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor Microenvironment-Triggered Self-Adaptive Polymeric Photosensitizers for Enhanced Photodynamic Therapy.
    Cui Z; Ji R; Xie J; Wang C; Tian J; Zhang W
    Biomacromolecules; 2024 Apr; 25(4):2302-2311. PubMed ID: 38507248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Effective Generation of Singlet Oxygen by an Imidazole-Linked Robust Photosensitizing Covalent Organic Framework.
    Luan TX; Du L; Wang JR; Li K; Zhang Q; Li PZ; Zhao Y
    ACS Nano; 2022 Dec; 16(12):21565-21575. PubMed ID: 36472955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy-Atom-Free Photosensitizers: From Molecular Design to Applications in the Photodynamic Therapy of Cancer.
    Nguyen VN; Yan Y; Zhao J; Yoon J
    Acc Chem Res; 2021 Jan; 54(1):207-220. PubMed ID: 33289536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-tumor evaluation of a novel methoxyphenyl substituted chlorin photosensitizer for photodynamic therapy.
    Dong Y; Li G; Wang L; Cao L; Li Y; Zhao W
    J Photochem Photobiol B; 2020 Oct; 211():112015. PubMed ID: 32927294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dithiaporphyrin derivatives as photosensitizers in membranes and cells.
    Minnes R; Weitman H; You Y; Detty MR; Ehrenberg B
    J Phys Chem B; 2008 Mar; 112(10):3268-76. PubMed ID: 18278897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid systems based on gold nanostructures and porphyrins as promising photosensitizers for photodynamic therapy.
    Ferreira DC; Monteiro CS; Chaves CR; Sáfar GAM; Moreira RL; Pinheiro MVB; Martins DCS; Ladeira LO; Krambrock K
    Colloids Surf B Biointerfaces; 2017 Feb; 150():297-307. PubMed ID: 28029548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembled porphyrin-peptide cages for photodynamic therapy.
    Ghosh C; Ali LMA; Bessin Y; Clément S; Richeter S; Bettache N; Ulrich S
    Org Biomol Chem; 2024 Feb; 22(7):1484-1494. PubMed ID: 38289387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanorod enhanced conjugated polymer/photosensitizer composite nanoparticles for simultaneous two-photon excitation fluorescence imaging and photodynamic therapy.
    Li S; Shen X; Xu QH; Cao Y
    Nanoscale; 2019 Nov; 11(41):19551-19560. PubMed ID: 31578535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear and high-molecular-weight poly-porphyrins for efficient photodynamic therapy.
    Zheng N; Li X; Huangfu S; Xia K; Yue R; Wu H; Song W
    Biomater Sci; 2021 Jun; 9(13):4630-4638. PubMed ID: 34190235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlorin e6-1,3-diphenylisobenzofuran polymer hybrid nanoparticles for singlet oxygen-detection photodynamic abaltion.
    Wang XH; Wei XF; Liu JH; Yang W; Liu YA; Cheng K; He XY; Fu XL; Zhang Y; Zhang HX
    Methods Appl Fluoresc; 2021 Feb; 9(2):025003. PubMed ID: 33524966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloidal plasmonic gold nanoparticles and gold nanorings: shape-dependent generation of singlet oxygen and their performance in enhanced photodynamic cancer therapy.
    Yang Y; Hu Y; Du H; Ren L; Wang H
    Int J Nanomedicine; 2018; 13():2065-2078. PubMed ID: 29670350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy.
    Jin CS; Cui L; Wang F; Chen J; Zheng G
    Adv Healthc Mater; 2014 Aug; 3(8):1240-9. PubMed ID: 24464930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.