These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38228174)

  • 1. Who innovates? Abundance of novel and familiar food changes which animals are most persistent.
    Kikuchi DW
    Proc Biol Sci; 2024 Jan; 291(2015):20231936. PubMed ID: 38228174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistence associated with extractive foraging explains variation in innovation in Darwin's finches.
    Ibáñez de Aldecoa P; Tebbich S; Griffin AS
    Behav Ecol; 2024; 35(1):arad090. PubMed ID: 38193016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual specialization in diet by a generalist marine predator reflects specialization in foraging behaviour.
    Woo KJ; Elliott KH; Davidson M; Gaston AJ; Davoren GK
    J Anim Ecol; 2008 Nov; 77(6):1082-91. PubMed ID: 18624834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative prey abundance and predator preference predict individual diet variation in prey-switching experiments.
    Coblentz KE
    Ecology; 2020 Jan; 101(1):e02911. PubMed ID: 31608433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Echolocating bats prefer a high risk-high gain foraging strategy to increase prey profitability.
    Stidsholt L; Hubancheva A; Greif S; Goerlitz HR; Johnson M; Yovel Y; Madsen PT
    Elife; 2023 Apr; 12():. PubMed ID: 37070239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-term prey field lability constrains individual specialisation in resource selection and foraging site fidelity in a marine predator.
    Courbin N; Besnard A; Péron C; Saraux C; Fort J; Perret S; Tornos J; Grémillet D
    Ecol Lett; 2018 Jul; 21(7):1043-1054. PubMed ID: 29659122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The contribution of developmental experience vs. condition to life history, trait variation and individual differences.
    DiRienzo N; Montiglio PO
    J Anim Ecol; 2016 Jul; 85(4):915-26. PubMed ID: 26937627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspective: the evolution of warning coloration is not paradoxical.
    Marples NM; Kelly DJ; Thomas RJ
    Evolution; 2005 May; 59(5):933-40. PubMed ID: 16136793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditions for the spread of conspicuous warning signals: a numerical model with novel insights.
    Puurtinen M; Kaitala V
    Evolution; 2006 Nov; 60(11):2246-56. PubMed ID: 17236418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal heterogeneity in prey abundance and vulnerability shapes the foraging tactics of an omnivore.
    Rayl ND; Bastille-Rousseau G; Organ JF; Mumma MA; Mahoney SP; Soulliere CE; Lewis KP; Otto RD; Murray DL; Waits LP; Fuller TK
    J Anim Ecol; 2018 May; 87(3):874-887. PubMed ID: 29450888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of a main dish: nestling diet and foraging behaviour in Mediterranean blue tits in relation to prey phenology.
    García-Navas V; Sanz JJ
    Oecologia; 2011 Mar; 165(3):639-49. PubMed ID: 21113622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foraging strategy of a carnivorous-insectivorous raptor species based on prey size, capturability and nutritional components.
    Fargallo JA; Navarro-López J; Palma-Granados P; Nieto RM
    Sci Rep; 2020 May; 10(1):7583. PubMed ID: 32372048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diet selection in a molluscivore shorebird across Western Europe: does it show short- or long-term intake rate-maximization?
    Quaintenne G; van Gils JA; Bocher P; Dekinga A; Piersma T
    J Anim Ecol; 2010 Jan; 79(1):53-62. PubMed ID: 19674177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uniform persistence for sigmoidal diet selection with keystone prey species.
    Sikder A
    J Math Biol; 2000 Jul; 41(1):25-44. PubMed ID: 10958414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating the long-term repeatability of food-hoarding behaviours in an avian predator.
    Class B; Masoero G; Terraube J; Korpimäki E
    Biol Lett; 2021 Jul; 17(7):20210286. PubMed ID: 34256584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insect prey foraging strategies in Callicebus oenanthe in northern Peru.
    Deluycker AM
    Am J Primatol; 2012 May; 74(5):450-61. PubMed ID: 22311736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The physiological costs of prey switching reinforce foraging specialization.
    Hooker OE; Van Leeuwen TE; Adams CE
    J Anim Ecol; 2017 May; 86(3):605-614. PubMed ID: 28075009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trait-based diet selection: prey behaviour and morphology predict vulnerability to predation in reef fish communities.
    Green SJ; Côté IM
    J Anim Ecol; 2014 Nov; 83(6):1451-60. PubMed ID: 24861366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased autumn rainfall disrupts predator-prey interactions in fragmented boreal forests.
    Terraube J; Villers A; Poudré L; Varjonen R; Korpimäki E
    Glob Chang Biol; 2017 Apr; 23(4):1361-1373. PubMed ID: 27371812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of exploration behavior, aptitude for pellet consumption, and the predation practice on the performance in consecutive live prey foraging tests in a piscivorous species.
    Molnár T; Urbányi B; Benedek I
    Anim Cogn; 2023 Jun; 26(3):973-984. PubMed ID: 36708449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.