These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38228212)

  • 1. A novel cellulolytic/xylanolytic SbAA14 from Sordaria brevicollis with a branched chain preference and its synergistic effects with glycoside hydrolases on lignocellulose.
    Chen X; Zhang X; Zhao X; Zhang P; Long L; Ding S
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129504. PubMed ID: 38228212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel AA14 LPMO from Talaromyces rugulosus with bifunctional cellulolytic/hemicellulolytic activity boosted cellulose hydrolysis.
    Chen K; Zhao X; Zhang P; Long L; Ding S
    Biotechnol Biofuels Bioprod; 2024 Feb; 17(1):30. PubMed ID: 38395898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two C1-oxidizing AA9 lytic polysaccharide monooxygenases from Sordaria brevicollis differ in thermostability, activity, and synergy with cellulase.
    Zhang X; Chen K; Long L; Ding S
    Appl Microbiol Biotechnol; 2021 Dec; 105(23):8739-8759. PubMed ID: 34748039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Six Lytic Polysaccharide Monooxygenases from
    Tõlgo M; Hegnar OA; Østby H; Várnai A; Vilaplana F; Eijsink VGH; Olsson L
    Appl Environ Microbiol; 2022 Mar; 88(6):e0009622. PubMed ID: 35080911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes.
    Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M
    Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering the efficient cellulose degradation by the thermophilic fungus Myceliophthora thermophila focused on the synergistic action of glycoside hydrolases and lytic polysaccharide monooxygenases.
    Qin X; Zou J; Yang K; Li J; Wang X; Tu T; Wang Y; Yao B; Huang H; Luo H
    Bioresour Technol; 2022 Nov; 364():128027. PubMed ID: 36174898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the AA14 family of lytic polysaccharide monooxygenases and their catalytic activity.
    Tuveng TR; Østby H; Tamburrini KC; Bissaro B; Hegnar OA; Stepnov AA; Várnai A; Berrin JG; Eijsink VGH
    FEBS Lett; 2023 Aug; 597(16):2086-2102. PubMed ID: 37418595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative biochemical investigation of the impeding effect of C1-oxidizing LPMOs on cellobiohydrolases.
    Keller MB; Badino SF; Røjel N; Sørensen TH; Kari J; McBrayer B; Borch K; Blossom BM; Westh P
    J Biol Chem; 2021; 296():100504. PubMed ID: 33675751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BsLPMO10A from Bacillus subtilis boosts the depolymerization of diverse polysaccharides linked via β-1,4-glycosidic bonds.
    Sun XB; Gao DY; Cao JW; Liu Y; Rong ZT; Wang JK; Wang Q
    Int J Biol Macromol; 2023 Mar; 230():123133. PubMed ID: 36621733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa.
    Hegnar OA; Østby H; Petrović DM; Olsson L; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2021 Nov; 87(24):e0165221. PubMed ID: 34613755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity.
    Frommhagen M; Koetsier MJ; Westphal AH; Visser J; Hinz SW; Vincken JP; van Berkel WJ; Kabel MA; Gruppen H
    Biotechnol Biofuels; 2016; 9(1):186. PubMed ID: 27588039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action.
    Várnai A; Umezawa K; Yoshida M; Eijsink VGH
    Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Type-dependent action modes of
    Kim IJ; Seo N; An HJ; Kim JH; Harris PV; Kim KH
    Biotechnol Biofuels; 2017; 10():46. PubMed ID: 28250814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from
    Ogunyewo OA; Randhawa A; Gupta M; Kaladhar VC; Verma PK; Yazdani SS
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new synergistic relationship between xylan-active LPMO and xylobiohydrolase to tackle recalcitrant xylan.
    Zerva A; Pentari C; Grisel S; Berrin JG; Topakas E
    Biotechnol Biofuels; 2020; 13():142. PubMed ID: 32793303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the molecular determinants driving the substrate specificity of fungal lytic polysaccharide monooxygenases (LPMOs).
    Frandsen KEH; Haon M; Grisel S; Henrissat B; Lo Leggio L; Berrin JG
    J Biol Chem; 2021; 296():100086. PubMed ID: 33199373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of AA9 Lytic Polysaccharide Monooxygenases Impacts A. nidulans Secretome and Growth on Lignocellulose.
    Terrasan CRF; Rubio MV; Gerhardt JA; Cairo JPF; Contesini FJ; Zubieta MP; Figueiredo FL; Valadares FL; Corrêa TLR; Murakami MT; Franco TT; Davies GJ; Walton PH; Damasio A
    Microbiol Spectr; 2022 Jun; 10(3):e0212521. PubMed ID: 35658600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic debranching is a key determinant of the xylan-degrading activity of family AA9 lytic polysaccharide monooxygenases.
    Tõlgo M; Hegnar OA; Larsbrink J; Vilaplana F; Eijsink VGH; Olsson L
    Biotechnol Biofuels Bioprod; 2023 Jan; 16(1):2. PubMed ID: 36604763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mini review of xylanolytic enzymes with regards to their synergistic interactions during hetero-xylan degradation.
    Malgas S; Mafa MS; Mkabayi L; Pletschke BI
    World J Microbiol Biotechnol; 2019 Nov; 35(12):187. PubMed ID: 31728656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.