BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38228620)

  • 21. Artemisinin rewires the protein interaction network in cancer cells: network analysis, pathway identification, and target prediction.
    Huang C; Ba Q; Yue Q; Li J; Li J; Chu R; Wang H
    Mol Biosyst; 2013 Dec; 9(12):3091-100. PubMed ID: 24085322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A systems biology approach to identify microRNAs contributing to cisplatin resistance in human ovarian cancer cells.
    Liu W; Wang S; Zhou S; Yang F; Jiang W; Zhang Q; Wang L
    Mol Biosyst; 2017 Oct; 13(11):2268-2276. PubMed ID: 28861582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel approach to predicting the synergy of anti-cancer drug combinations using document-based feature extraction.
    Shim Y; Lee M; Kim PJ; Kim HG
    BMC Bioinformatics; 2022 May; 23(1):163. PubMed ID: 35513784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A cancer drug atlas enables synergistic targeting of independent drug vulnerabilities.
    Narayan RS; Molenaar P; Teng J; Cornelissen FMG; Roelofs I; Menezes R; Dik R; Lagerweij T; Broersma Y; Petersen N; Marin Soto JA; Brands E; van Kuiken P; Lecca MC; Lenos KJ; In 't Veld SGJG; van Wieringen W; Lang FF; Sulman E; Verhaak R; Baumert BG; Stalpers LJA; Vermeulen L; Watts C; Bailey D; Slotman BJ; Versteeg R; Noske D; Sminia P; Tannous BA; Wurdinger T; Koster J; Westerman BA
    Nat Commun; 2020 Jun; 11(1):2935. PubMed ID: 32523045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Looking beyond the cancer cell for effective drug combinations.
    Dry JR; Yang M; Saez-Rodriguez J
    Genome Med; 2016 Nov; 8(1):125. PubMed ID: 27887656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A deep learning model based on sparse auto-encoder for prioritizing cancer-related genes and drug target combinations.
    Chang JW; Ding Y; Tahir Ul Qamar M; Shen Y; Gao J; Chen LL
    Carcinogenesis; 2019 Jul; 40(5):624-632. PubMed ID: 30944926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SynPathy: Predicting Drug Synergy through Drug-Associated Pathways Using Deep Learning.
    Tang YC; Gottlieb A
    Mol Cancer Res; 2022 May; 20(5):762-769. PubMed ID: 35046110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predictive approaches for drug combination discovery in cancer.
    Madani Tonekaboni SA; Soltan Ghoraie L; Manem VSK; Haibe-Kains B
    Brief Bioinform; 2018 Mar; 19(2):263-276. PubMed ID: 27881431
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. miRNA-miRNA crosstalk: from genomics to phenomics.
    Xu J; Shao T; Ding N; Li Y; Li X
    Brief Bioinform; 2017 Nov; 18(6):1002-1011. PubMed ID: 27551063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A pan-cancer analysis of the HER family gene and their association with prognosis, tumor microenvironment, and therapeutic targets.
    Yang X; Miao Y; Wang J; Mi D
    Life Sci; 2021 May; 273():119307. PubMed ID: 33691171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inferences of individual drug responses across diverse cancer types using a novel competing endogenous RNA network.
    Zhang Y; Li X; Zhou D; Zhi H; Wang P; Gao Y; Guo M; Yue M; Wang Y; Shen W; Ning S; Li Y; Li X
    Mol Oncol; 2018 Sep; 12(9):1429-1446. PubMed ID: 29464864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pathway-Based Drug Repositioning for Cancers: Computational Prediction and Experimental Validation.
    Iwata M; Hirose L; Kohara H; Liao J; Sawada R; Akiyoshi S; Tani K; Yamanishi Y
    J Med Chem; 2018 Nov; 61(21):9583-9595. PubMed ID: 30371064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systems modelling of the EGFR-PYK2-c-Met interaction network predicts and prioritizes synergistic drug combinations for triple-negative breast cancer.
    Shin SY; Müller AK; Verma N; Lev S; Nguyen LK
    PLoS Comput Biol; 2018 Jun; 14(6):e1006192. PubMed ID: 29920512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Constructing and characterizing a bioactive small molecule and microRNA association network for Alzheimer's disease.
    Meng F; Dai E; Yu X; Zhang Y; Chen X; Liu X; Wang S; Wang L; Jiang W
    J R Soc Interface; 2014 Mar; 11(92):20131057. PubMed ID: 24352679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Integrated Data Analysis of mRNA, miRNA and Signaling Pathways in Pancreatic Cancer.
    Sohrabi E; Rezaie E; Heiat M; Sefidi-Heris Y
    Biochem Genet; 2021 Oct; 59(5):1326-1358. PubMed ID: 33813720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstructing cancer drug response networks using multitask learning.
    Ruffalo M; Stojanov P; Pillutla VK; Varma R; Bar-Joseph Z
    BMC Syst Biol; 2017 Oct; 11(1):96. PubMed ID: 29017547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. LnCeCell: a comprehensive database of predicted lncRNA-associated ceRNA networks at single-cell resolution.
    Wang P; Guo Q; Hao Y; Liu Q; Gao Y; Zhi H; Li X; Shang S; Guo S; Zhang Y; Ning S; Li X
    Nucleic Acids Res; 2021 Jan; 49(D1):D125-D133. PubMed ID: 33219686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An integrated framework for identification of effective and synergistic anti-cancer drug combinations.
    Sharma A; Rani R
    J Bioinform Comput Biol; 2018 Oct; 16(5):1850017. PubMed ID: 30304987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting enzyme targets for cancer drugs by profiling human metabolic reactions in NCI-60 cell lines.
    Li L; Zhou X; Ching WK; Wang P
    BMC Bioinformatics; 2010 Oct; 11():501. PubMed ID: 20932284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.