These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 38228672)
1. Light-enhanced catalytic activity of stable and large gold nanoparticles in homocoupling reactions. Hou J; Lartey JA; Lee CY; Kim JH Sci Rep; 2024 Jan; 14(1):1352. PubMed ID: 38228672 [TBL] [Abstract][Full Text] [Related]
2. Comparative Catalytic Properties of Supported and Encapsulated Gold Nanoparticles in Homocoupling Reactions. Jang W; Yun J; Ludwig L; Jang SG; Bae JY; Byun H; Kim JH Front Chem; 2020; 8():834. PubMed ID: 33195039 [TBL] [Abstract][Full Text] [Related]
3. Integration of Gold Nanoparticles into Crosslinker-Free Polymer Particles and Their Colloidal Catalytic Property. Hou J; Li B; Jang W; Yun J; Eyimegwu FM; Kim JH Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770377 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and Photocatalytic Activity of Hexagonal Plate-like Shaped Au Nanoparticles/ZnO Composite Particles under Visible-light Irradiation. Amano M; Recuenco MC; Hashimoto K; Shibata H J Oleo Sci; 2022 Apr; 71(5):771-778. PubMed ID: 35296575 [TBL] [Abstract][Full Text] [Related]
5. Sunlight-induced synthesis of various gold nanoparticles and their heterogeneous catalytic properties on a paper-based substrate. Kim JH; Twaddle KM; Hu J; Byun H ACS Appl Mater Interfaces; 2014 Jul; 6(14):11514-22. PubMed ID: 24984258 [TBL] [Abstract][Full Text] [Related]
6. An optical biosensing platform for proteinase activity using gold nanoparticles. Chuang YC; Li JC; Chen SH; Liu TY; Kuo CH; Huang WT; Lin CS Biomaterials; 2010 Aug; 31(23):6087-95. PubMed ID: 20471084 [TBL] [Abstract][Full Text] [Related]
8. Exploiting gold nanoparticles for diagnosis and cancer treatments. D'Acunto M; Cioni P; Gabellieri E; Presciuttini G Nanotechnology; 2021 May; 32(19):192001. PubMed ID: 33524960 [TBL] [Abstract][Full Text] [Related]
9. Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting. Zhang J; Jin X; Morales-Guzman PI; Yu X; Liu H; Zhang H; Razzari L; Claverie JP ACS Nano; 2016 Apr; 10(4):4496-503. PubMed ID: 27054374 [TBL] [Abstract][Full Text] [Related]
10. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Huang YF; Zhang M; Zhao LB; Feng JM; Wu DY; Ren B; Tian ZQ Angew Chem Int Ed Engl; 2014 Feb; 53(9):2353-7. PubMed ID: 24481674 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of molecular decomposition under irradiation of gold nanoparticles with nanosecond laser pulses-A 5-Bromouracil case study. Marques TS; Schürmann R; Ebel K; Heck C; Śmiałek MA; Eden S; Mason N; Bald I J Chem Phys; 2020 Mar; 152(12):124712. PubMed ID: 32241129 [TBL] [Abstract][Full Text] [Related]
12. Gold Nanoparticles in Photonic Crystals Applications: A Review. Venditti I Materials (Basel); 2017 Jan; 10(2):. PubMed ID: 28772458 [TBL] [Abstract][Full Text] [Related]
13. Gold nanoparticle-mediated generation of reactive oxygen species during plasmonic photothermal therapy: a comparative study for different particle sizes, shapes, and surface conjugations. Guerrero-Florez V; Mendez-Sanchez SC; Patrón-Soberano OA; Rodríguez-González V; Blach D; Martínez O F J Mater Chem B; 2020 Apr; 8(14):2862-2875. PubMed ID: 32186317 [TBL] [Abstract][Full Text] [Related]
14. Surface Plasmon Resonance-Enhanced Visible-NIR-Driven Photocatalytic and Photothermal Catalytic Performance by Ag/Mesoporous Black TiO Qiao P; Sun B; Li H; Pan K; Tian G; Wang L; Zhou W Chem Asian J; 2019 Jan; 14(1):177-186. PubMed ID: 30398305 [TBL] [Abstract][Full Text] [Related]
15. Cellulose paper support with dual-layered nano-microstructures for enhanced plasmonic photothermal heating and solar vapor generation. Huang Y; Morishita Y; Uetani K; Nogi M; Koga H Nanoscale Adv; 2020 Jun; 2(6):2339-2346. PubMed ID: 36133379 [TBL] [Abstract][Full Text] [Related]
16. Synergistic enhanced photocatalytic and photothermal activity of Au@TiO2 nanopellets against human epithelial carcinoma cells. Abdulla-Al-Mamun M; Kusumoto Y; Zannat T; Islam MS Phys Chem Chem Phys; 2011 Dec; 13(47):21026-34. PubMed ID: 22011673 [TBL] [Abstract][Full Text] [Related]
17. Coupling Plasmonic and Cocatalyst Nanoparticles on N⁻TiO₂ for Visible-Light-Driven Catalytic Organic Synthesis. Wang Y; Chen Y; Hou Q; Ju M; Li W Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30866493 [TBL] [Abstract][Full Text] [Related]
18. Synergistic Effect of Dual Particle-Size AuNPs on TiO₂ for Efficient Photocatalytic Hydrogen Evolution. Zhao Q; Zhang Q; Du C; Sun S; Steinkruger JD; Zhou C; Yang S Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30939742 [TBL] [Abstract][Full Text] [Related]
19. The effect of sulfate pre-treatment to improve the deposition of Au-nanoparticles in a gold-modified sulfated g-C Patnaik S; Martha S; Madras G; Parida K Phys Chem Chem Phys; 2016 Oct; 18(41):28502-28514. PubMed ID: 27722288 [TBL] [Abstract][Full Text] [Related]
20. Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Kowalska E; Mahaney OO; Abe R; Ohtani B Phys Chem Chem Phys; 2010 Mar; 12(10):2344-55. PubMed ID: 20449347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]