BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38229122)

  • 41. Benchmarking long-read aligners and SV callers for structural variation detection in Oxford nanopore sequencing data.
    Helal AA; Saad BT; Saad MT; Mosaad GS; Aboshanab KM
    Sci Rep; 2024 Mar; 14(1):6160. PubMed ID: 38486064
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intronic Breakpoint Signatures Enhance Detection and Characterization of Clinically Relevant Germline Structural Variants.
    van den Akker J; Hon L; Ondov A; Mahkovec Z; O'Connor R; Chan RC; Lock J; Zimmer AD; Rostamianfar A; Ginsberg J; Leon A; Topper S
    J Mol Diagn; 2021 May; 23(5):612-629. PubMed ID: 33621668
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pysim-sv: a package for simulating structural variation data with GC-biases.
    Xia Y; Liu Y; Deng M; Xi R
    BMC Bioinformatics; 2017 Mar; 18(Suppl 3):53. PubMed ID: 28361688
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improving somatic exome sequencing performance by biological replicates.
    Cebeci YE; Erturk RA; Ergun MA; Baysan M
    BMC Bioinformatics; 2024 Mar; 25(1):124. PubMed ID: 38519906
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparing the performance of selected variant callers using synthetic data and genome segmentation.
    Bian X; Zhu B; Wang M; Hu Y; Chen Q; Nguyen C; Hicks B; Meerzaman D
    BMC Bioinformatics; 2018 Nov; 19(1):429. PubMed ID: 30453880
    [TBL] [Abstract][Full Text] [Related]  

  • 46. StrVCTVRE: A supervised learning method to predict the pathogenicity of human genome structural variants.
    Sharo AG; Hu Z; Sunyaev SR; Brenner SE
    Am J Hum Genet; 2022 Feb; 109(2):195-209. PubMed ID: 35032432
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Clinical Targeted Next-Generation sequencing Panels for Detection of Somatic Variants in Gliomas.
    Shin H; Sa JK; Bae JS; Koo H; Jin S; Cho HJ; Choi SW; Kyoung JM; Kim JY; Seo YJ; Joung JG; Kim NKD; Son DS; Chung J; Lee T; Kong DS; Choi JW; Seol HJ; Lee JI; Suh YL; Park WY; Nam DH
    Cancer Res Treat; 2020 Jan; 52(1):41-50. PubMed ID: 31096737
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NextSV: a meta-caller for structural variants from low-coverage long-read sequencing data.
    Fang L; Hu J; Wang D; Wang K
    BMC Bioinformatics; 2018 May; 19(1):180. PubMed ID: 29792160
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Practical Guide for Structural Variation Detection in the Human Genome.
    Yang L
    Curr Protoc Hum Genet; 2020 Sep; 107(1):e103. PubMed ID: 32813322
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SVDSS: structural variation discovery in hard-to-call genomic regions using sample-specific strings from accurate long reads.
    Denti L; Khorsand P; Bonizzoni P; Hormozdiari F; Chikhi R
    Nat Methods; 2023 Apr; 20(4):550-558. PubMed ID: 36550274
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Toward Recovering Allele-specific Cancer Genome Graphs.
    Rajaraman A; Ma J
    J Comput Biol; 2018 Jul; 25(7):624-636. PubMed ID: 29658776
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Unravelling the tumour genome: The evolutionary and clinical impacts of structural variants in tumourigenesis.
    Hamdan A; Ewing A
    J Pathol; 2022 Jul; 257(4):479-493. PubMed ID: 35355264
    [TBL] [Abstract][Full Text] [Related]  

  • 53. GASOLINE: detecting germline and somatic structural variants from long-reads data.
    Magi A; Mattei G; Mingrino A; Caprioli C; Ronchini C; Frigè G; Semeraro R; Baragli M; Bolognini D; Colombo E; Mazzarella L; Pelicci PG
    Sci Rep; 2023 Nov; 13(1):20817. PubMed ID: 38012350
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comprehensive evaluation and characterisation of short read general-purpose structural variant calling software.
    Cameron DL; Di Stefano L; Papenfuss AT
    Nat Commun; 2019 Jul; 10(1):3240. PubMed ID: 31324872
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combined use of Oxford Nanopore and Illumina sequencing yields insights into soybean structural variation biology.
    Lemay MA; Sibbesen JA; Torkamaneh D; Hamel J; Levesque RC; Belzile F
    BMC Biol; 2022 Feb; 20(1):53. PubMed ID: 35197050
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of structural variant callers for massive whole-genome sequence data.
    Joe S; Park JL; Kim J; Kim S; Park JH; Yeo MK; Lee D; Yang JO; Kim SY
    BMC Genomics; 2024 Mar; 25(1):318. PubMed ID: 38549092
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiplex structural variant detection by whole-genome mapping and nanopore sequencing.
    Uppuluri L; Wang Y; Young E; Wong JS; Abid HZ; Xiao M
    Sci Rep; 2022 Apr; 12(1):6512. PubMed ID: 35444207
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of single nucleotide variants using position-specific error estimation in deep sequencing data.
    Kleftogiannis D; Punta M; Jayaram A; Sandhu S; Wong SQ; Gasi Tandefelt D; Conteduca V; Wetterskog D; Attard G; Lise S
    BMC Med Genomics; 2019 Aug; 12(1):115. PubMed ID: 31375105
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural variation detection using next-generation sequencing data: A comparative technical review.
    Guan P; Sung WK
    Methods; 2016 Jun; 102():36-49. PubMed ID: 26845461
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Systematic evaluation of multiple NGS platforms for structural variants detection.
    Meng X; Wang M; Luo M; Sun L; Yan Q; Liu Y
    J Biol Chem; 2023 Dec; 299(12):105436. PubMed ID: 37944616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.