These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 38229400)

  • 1. Posttranslational modification and heme cavity architecture of human eosinophil peroxidase-insights from first crystal structure and biochemical characterization.
    Pfanzagl V; Gruber-Grünwald C; Leitgeb U; Furtmüller PG; Obinger C
    J Biol Chem; 2023 Dec; 299(12):105402. PubMed ID: 38229400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of human promyeloperoxidase (proMPO) and the role of the propeptide in processing and maturation.
    Grishkovskaya I; Paumann-Page M; Tscheliessnig R; Stampler J; Hofbauer S; Soudi M; Sevcnikar B; Oostenbrink C; Furtmüller PG; Djinović-Carugo K; Nauseef WM; Obinger C
    J Biol Chem; 2017 May; 292(20):8244-8261. PubMed ID: 28348079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of human myeloperoxidase.
    Nauseef WM
    Arch Biochem Biophys; 2018 Mar; 642():1-9. PubMed ID: 29408362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3-Bromotyrosine and 3,5-dibromotyrosine are major products of protein oxidation by eosinophil peroxidase: potential markers for eosinophil-dependent tissue injury in vivo.
    Wu W; Chen Y; d'Avignon A; Hazen SL
    Biochemistry; 1999 Mar; 38(12):3538-48. PubMed ID: 10090740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational and thermal stability of mature dimeric human myeloperoxidase and a recombinant monomeric form from CHO cells.
    Banerjee S; Stampler J; Furtmüller PG; Obinger C
    Biochim Biophys Acta; 2011 Feb; 1814(2):375-87. PubMed ID: 20933108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Essential role of proximal histidine-asparagine interaction in mammalian peroxidases.
    Carpena X; Vidossich P; Schroettner K; Calisto BM; Banerjee S; Stampler J; Soudi M; Furtmüller PG; Rovira C; Fita I; Obinger C
    J Biol Chem; 2009 Sep; 284(38):25929-37. PubMed ID: 19608745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of ceruloplasmin with eosinophil peroxidase as compared to its interplay with myeloperoxidase: Reciprocal effect on enzymatic properties.
    Sokolov AV; Kostevich VA; Zakharova ET; Samygina VR; Panasenko OM; Vasilyev VB
    Free Radic Res; 2015 Jun; 49(6):800-11. PubMed ID: 25762223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-translational tyrosine nitration of eosinophil granule toxins mediated by eosinophil peroxidase.
    Ulrich M; Petre A; Youhnovski N; Prömm F; Schirle M; Schumm M; Pero RS; Doyle A; Checkel J; Kita H; Thiyagarajan N; Acharya KR; Schmid-Grendelmeier P; Simon HU; Schwarz H; Tsutsui M; Shimokawa H; Bellon G; Lee JJ; Przybylski M; Döring G
    J Biol Chem; 2008 Oct; 283(42):28629-40. PubMed ID: 18694936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical evidence for heme linkage through esters with Asp-93 and Glu-241 in human eosinophil peroxidase. The ester with Asp-93 is only partially formed in vivo.
    Oxvig C; Thomsen AR; Overgaard MT; Sorensen ES; Højrup P; Bjerrum MJ; Gleich GJ; Sottrup-Jensen L
    J Biol Chem; 1999 Jun; 274(24):16953-8. PubMed ID: 10358043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eosinophil Peroxidase Catalyzed Protein Carbamylation Participates in Asthma.
    Wang Z; DiDonato JA; Buffa J; Comhair SA; Aronica MA; Dweik RA; Lee NA; Lee JJ; Thomassen MJ; Kavuru M; Erzurum SC; Hazen SL
    J Biol Chem; 2016 Oct; 291(42):22118-22135. PubMed ID: 27587397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders.
    Wu W; Chen Y; Hazen SL
    J Biol Chem; 1999 Sep; 274(36):25933-44. PubMed ID: 10464338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman microspectroscopic characterization of eosinophil peroxidase in human eosinophilic granulocytes.
    Salmaso BL; Puppels GJ; Caspers PJ; Floris R; Wever R; Greve J
    Biophys J; 1994 Jul; 67(1):436-46. PubMed ID: 7919017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of homovanillic acid as a selective assay for eosinophil peroxidase in eosinophil peroxidase-myeloperoxidase mixtures and its use in the detection of human eosinophil peroxidase deficiency.
    Menegazzi R; Zabucchi G; Zuccato P; Cramer R; Piccinini C; Patriarca P
    J Immunol Methods; 1991 Mar; 137(1):55-63. PubMed ID: 1849156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assay of the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase.
    Bozeman PM; Learn DB; Thomas EL
    J Immunol Methods; 1990 Jan; 126(1):125-33. PubMed ID: 2154520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of heme insertion and the mannose-6-phosphate receptor in processing of the human myeloid lysosomal enzyme, myeloperoxidase.
    Nauseef WM; McCormick S; Yi H
    Blood; 1992 Nov; 80(10):2622-33. PubMed ID: 1330078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eosinophil peroxidase differs from neutrophil myeloperoxidase in its ability to bind antineutrophil cytoplasmic antibodies reactive with myeloperoxidase.
    Sullivan S; Salapow MA; Breen R; Broide DH
    Int Arch Allergy Immunol; 1994 Oct; 105(2):150-4. PubMed ID: 7920015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein Radical Formation Resulting from Eosinophil Peroxidase-catalyzed Oxidation of Sulfite.
    Ranguelova K; Chatterjee S; Ehrenshaft M; Ramirez DC; Summers FA; Kadiiska MB; Mason RP
    J Biol Chem; 2010 Jul; 285(31):24195-205. PubMed ID: 20501663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox thermodynamics of lactoperoxidase and eosinophil peroxidase.
    Battistuzzi G; Bellei M; Vlasits J; Banerjee S; Furtmüller PG; Sola M; Obinger C
    Arch Biochem Biophys; 2010 Feb; 494(1):72-7. PubMed ID: 19944669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation.
    Laura RP; Dong D; Reynolds WF; Maki RA
    PLoS One; 2016; 11(2):e0149391. PubMed ID: 26890638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interrogation of heme pocket environment of mammalian peroxidases with diatomic ligands.
    Abu-Soud HM; Hazen SL
    Biochemistry; 2001 Sep; 40(36):10747-55. PubMed ID: 11535049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.