These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38229925)

  • 21. TIA-YOLOv5: An improved YOLOv5 network for real-time detection of crop and weed in the field.
    Wang A; Peng T; Cao H; Xu Y; Wei X; Cui B
    Front Plant Sci; 2022; 13():1091655. PubMed ID: 36618638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CropDeep: The Crop Vision Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture.
    Zheng YY; Kong JL; Jin XB; Wang XY; Zuo M
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832283
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Channel Attention GAN-Based Synthetic Weed Generation for Precise Weed Identification.
    Li T; Asai M; Kato Y; Fukano Y; Guo W
    Plant Phenomics; 2024; 6():0122. PubMed ID: 38560380
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultra-high-resolution hyperspectral imagery datasets for precision agriculture applications.
    Munipalle VK; Nelakuditi UR; C V S S MK; Nidamanuri RR
    Data Brief; 2024 Aug; 55():110649. PubMed ID: 39035837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton.
    Sapkota BB; Popescu S; Rajan N; Leon RG; Reberg-Horton C; Mirsky S; Bagavathiannan MV
    Sci Rep; 2022 Nov; 12(1):19580. PubMed ID: 36379963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performances of the LBP Based Algorithm over CNN Models for Detecting Crops and Weeds with Similar Morphologies.
    Le VNT; Ahderom S; Alameh K
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. OnionFoliageSET: Labeled dataset for small onion and foliage flower crop detection.
    Restrepo-Arias JF; Branch-Bedoya JW; Arregocés-Guerra P
    Data Brief; 2024 Aug; 55():110679. PubMed ID: 39044903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields.
    Ma X; Deng X; Qi L; Jiang Y; Li H; Wang Y; Xing X
    PLoS One; 2019; 14(4):e0215676. PubMed ID: 30998770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Review of Weed Detection Methods Based on Computer Vision.
    Wu Z; Chen Y; Zhao B; Kang X; Ding Y
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An instance segmentation dataset of cabbages over the whole growing season for UAV imagery.
    Yokoyama Y; Matsui T; Tanaka TST
    Data Brief; 2024 Aug; 55():110699. PubMed ID: 39044907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Weakly Supervised Crop Area Segmentation for an Autonomous Combine Harvester.
    Kim WS; Lee DH; Kim T; Kim H; Sim T; Kim YJ
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of different deep convolutional neural networks for detection of broadleaf weed seedlings in wheat.
    Zhuang J; Li X; Bagavathiannan M; Jin X; Yang J; Meng W; Li T; Li L; Wang Y; Chen Y; Yu J
    Pest Manag Sci; 2022 Feb; 78(2):521-529. PubMed ID: 34561954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. WeedNet-R: a sugar beet field weed detection algorithm based on enhanced RetinaNet and context semantic fusion.
    Guo Z; Goh HH; Li X; Zhang M; Li Y
    Front Plant Sci; 2023; 14():1226329. PubMed ID: 37560032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overcoming field variability: unsupervised domain adaptation for enhanced crop-weed recognition in diverse farmlands.
    Ilyas T; Lee J; Won O; Jeong Y; Kim H
    Front Plant Sci; 2023; 14():1234616. PubMed ID: 37621880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Weed Classification from Natural Corn Field-Multi-Plant Images Based on Shallow and Deep Learning.
    Garibaldi-Márquez F; Flores G; Mercado-Ravell DA; Ramírez-Pedraza A; Valentín-Coronado LM
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fine-grained weed recognition using Swin Transformer and two-stage transfer learning.
    Wang Y; Zhang S; Dai B; Yang S; Song H
    Front Plant Sci; 2023; 14():1134932. PubMed ID: 36993854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images.
    Sebai M; Wang X; Wang T
    Med Biol Eng Comput; 2020 Jul; 58(7):1603-1623. PubMed ID: 32445109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of maize plant dataset for intelligent recognition and weed control.
    Olaniyi OM; Salaudeen MT; Daniya E; Abdullahi IM; Folorunso TA; Bala JA; Nuhu BK; Adedigba AP; Oluwole BI; Bankole AO; Macarthy OM
    Data Brief; 2023 Apr; 47():109030. PubMed ID: 36936631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of Inference Performance of Deep Learning Models for Real-Time Weed Detection in an Embedded Computer.
    Mwitta C; Rains GC; Prostko E
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Research on weed identification in soybean fields based on the lightweight segmentation model DCSAnet.
    Yu H; Che M; Yu H; Ma Y
    Front Plant Sci; 2023; 14():1268218. PubMed ID: 38116146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.