These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 38230114)

  • 1. Retracted: ERK1/2 Pathway Is Involved in the Enhancement of Fatty Acids from
    International BR
    Biomed Res Int; 2024; 2024():9764596. PubMed ID: 38230114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ERK1/2 Pathway Is Involved in the Enhancement of Fatty Acids from
    Xiao L; Zhang X; Chen Z; Li Y; Li B; Li L
    Biomed Res Int; 2020; 2020():2916104. PubMed ID: 33178821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Lipophilic Fucoxanthin-Rich
    Gille A; Stojnic B; Derwenskus F; Trautmann A; Schmid-Staiger U; Posten C; Briviba K; Palou A; Bonet ML; Ribot J
    Nutrients; 2019 Apr; 11(4):. PubMed ID: 30959933
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of Carotenoids from
    Mayer C; Côme M; Blanckaert V; Chini Zittelli G; Faraloni C; Nazih H; Ouguerram K; Mimouni V; Chénais B
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32575640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elevated CO
    Wu S; Gu W; Huang A; Li Y; Kumar M; Lim PE; Huan L; Gao S; Wang G
    Microb Cell Fact; 2019 Sep; 18(1):161. PubMed ID: 31547820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xanthophyll-Rich Extract of
    Smeriglio A; Lionti J; Ingegneri M; Burlando B; Cornara L; Grillo F; Mastracci L; Trombetta D
    Molecules; 2023 May; 28(10):. PubMed ID: 37241930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of optimum fatty acid extraction methods for two different microalgae Phaeodactylum tricornutum and Haematococcus pluvialis for food and biodiesel applications.
    Otero P; Saha SK; Gushin JM; Moane S; Barron J; Murray P
    Anal Bioanal Chem; 2017 Jul; 409(19):4659-4667. PubMed ID: 28593370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The occurrence of furan fatty acids in Isochrysis sp. and Phaeodactylum tricornutum.
    Batna A; Scheinkönig J; Spiteller G
    Biochim Biophys Acta; 1993 Feb; 1166(2-3):171-6. PubMed ID: 8443233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-cultivation of Phaeodactylum tricornutum and Aurantiochytrium limacinum for polyunsaturated omega-3 fatty acids production.
    Kadalag NL; Pawar PR; Prakash G
    Bioresour Technol; 2022 Feb; 346():126544. PubMed ID: 34902489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome, Biochemical and Growth Responses of the Marine Phytoplankter Phaeodactylum Tricornutum Bohlin (Bacillariophyta) to Copepod Grazer Presence.
    Li S; Ismar SMH
    Cell Physiol Biochem; 2018; 46(3):1091-1111. PubMed ID: 29669349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Malic Enzyme on Promoting Total Lipid and Fatty Acid Production in
    Zhu BH; Zhang RH; Lv NN; Yang GP; Wang YS; Pan KH
    Front Plant Sci; 2018; 9():826. PubMed ID: 29971080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of High-Level Omega-3 Eicosapentaenoic Acid (EPA) Production from Phaeodactylum tricornutum.
    Cui Y; Thomas-Hall SR; Chua ET; Schenk PM
    J Phycol; 2021 Feb; 57(1):258-268. PubMed ID: 33025589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delta 5 fatty acid desaturase upregulates the synthesis of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum.
    Peng KT; Zheng CN; Xue J; Chen XY; Yang WD; Liu JS; Bai W; Li HY
    J Agric Food Chem; 2014 Sep; 62(35):8773-6. PubMed ID: 25109502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a novel thioesterase (PtTE) from Phaeodactylum tricornutum.
    Gong Y; Guo X; Wan X; Liang Z; Jiang M
    J Basic Microbiol; 2011 Dec; 51(6):666-72. PubMed ID: 21656819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis.
    Domergue F; Lerchl J; Zähringer U; Heinz E
    Eur J Biochem; 2002 Aug; 269(16):4105-13. PubMed ID: 12180987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Culture Conditions Affect Antioxidant Production, Metabolism and Related Biomarkers of the Microalgae
    Curcuraci E; Manuguerra S; Messina CM; Arena R; Renda G; Ioannou T; Amato V; Hellio C; Barba FJ; Santulli A
    Antioxidants (Basel); 2022 Feb; 11(2):. PubMed ID: 35204292
    [No Abstract]   [Full Text] [Related]  

  • 17. ROS-mediated time-varying cytotoxic effects on Phaeodactylum tricornutum under the stress of commercial naphthenic acids.
    Zhihao L; Huanxin Z; Xinyu Z; Tongfei Q; Jun C; Chen G; Yi Z; Chengzong H; Xuexi T; Ying W
    Ecotoxicol Environ Saf; 2022 Sep; 243():114014. PubMed ID: 36027711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum.
    Radakovits R; Eduafo PM; Posewitz MC
    Metab Eng; 2011 Jan; 13(1):89-95. PubMed ID: 20971205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An auxin-like supermolecule to simultaneously enhance growth and cumulative eicosapentaenoic acid production in Phaeodactylum tricornutum.
    Wang Z; Mou J; Qin Z; He Y; Sun Z; Wang X; Lin CSK
    Bioresour Technol; 2022 Feb; 345():126564. PubMed ID: 34915115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae).
    Liang Y; Beardall J; Heraud P
    J Photochem Photobiol B; 2006 Mar; 82(3):161-72. PubMed ID: 16388965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.