These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38230375)

  • 1. Advancing Fluoride-Ion Batteries with a Pb-PbF
    Galatolo G; Alshangiti O; Di Mino C; Matthews G; Xiao AW; Rees GJ; Schart M; Chart YA; Olbrich LF; Pasta M
    ACS Energy Lett; 2024 Jan; 9(1):85-92. PubMed ID: 38230375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of a reversible redox reaction in a liquid-electrolyte-type fluoride-ion battery.
    Yaokawa R; Shiga T; Moribe S; Mukai K
    RSC Adv; 2022 Nov; 12(49):31786-31791. PubMed ID: 36380965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and Interfacial Modification of a β-PbSnF
    Liu J; Yi L; Chen X; Tang Y; Zang Z; Zou C; Zeng P; Li D; Xia J; Ni S; Wang X
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36373-36383. PubMed ID: 37482949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing ternary materials for fluoride-ion batteries.
    McTaggart DH; Sundberg JD; McRae LM; Warren SC
    Sci Data; 2023 Feb; 10(1):90. PubMed ID: 36774371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dual-Ion Battery.
    Xiang L; Ou X; Wang X; Zhou Z; Li X; Tang Y
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):17924-17930. PubMed ID: 32558980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rate-Determining Process at Electrode/Electrolyte Interfaces for All-Solid-State Fluoride-Ion Batteries.
    Zhang D; Nakano H; Yamamoto K; Tanaka K; Yahara T; Imai K; Mori T; Miki H; Nakanishi S; Iba H; Watanabe T; Uchiyama T; Amezawa K; Uchimoto Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(25):30198-30204. PubMed ID: 34152731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductivity Optimization of Tysonite-type La
    Bhatia H; Thieu DT; Pohl AH; Chakravadhanula VSK; Fawey MH; Kübel C; Fichtner M
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23707-23715. PubMed ID: 28570050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.
    Kasnatscheew J; Wagner R; Winter M; Cekic-Laskovic I
    Top Curr Chem (Cham); 2018 Apr; 376(3):16. PubMed ID: 29671099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-Assisted Surface Lithium Fluoride Decoration of a Cobalt-Free High-Voltage Spinel LiNi
    Cui Z; Khosla N; Lai T; Narayan J; Manthiram A
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1247-1255. PubMed ID: 36574779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent-in-Salt Electrolytes for Fluoride Ion Batteries.
    Alshangiti O; Galatolo G; Rees GJ; Guo H; Quirk JA; Dawson JA; Pasta M
    ACS Energy Lett; 2023 Jun; 8(6):2668-2673. PubMed ID: 37324537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a LiF-Rich Solid Electrolyte Interphase Layer through Highly Concentrated LiFSI-THF Electrolyte for Stable Lithium Metal Batteries.
    Pham TD; Bin Faheem A; Lee KK
    Small; 2021 Nov; 17(46):e2103375. PubMed ID: 34636172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and testing of coin cells of lithium ion batteries.
    Kayyar A; Huang J; Samiee M; Luo J
    J Vis Exp; 2012 Aug; (66):e4104. PubMed ID: 22895280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research progress of organic liquid electrolyte for sodium ion battery.
    Zhang J; Li J; Wang H; Wang M
    Front Chem; 2023; 11():1253959. PubMed ID: 37780988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional heterogeneity in liquid electrolyte structures promotes Na ion transport and storage performance in Na-ion batteries.
    Ma M; Chen B; Pan H
    Chem Sci; 2023 Jun; 14(22):5983-5991. PubMed ID: 37293649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic conductivity and structure of M
    Düvel A
    Dalton Trans; 2019 Jan; 48(3):859-871. PubMed ID: 30475375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical Introduction/Extraction of Fluoride Ions into/from Graphene-like Graphite for Positive Electrode Materials of Fluoride-Ion Shuttle Batteries.
    Inoo A; Inamoto J; Matsuo Y
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):56678-56684. PubMed ID: 36472913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable Cycle Performance of a Phosphorus Negative Electrode in Lithium-Ion Batteries Derived from Ionic Liquid Electrolytes.
    Kaushik S; Matsumoto K; Hagiwara R
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):10891-10901. PubMed ID: 33630586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorinated Interface Engineering toward Controllable Zinc Deposition and Rapid Cation Migration of Aqueous Zn-Ion Batteries.
    Feng Y; Wang Y; Sun L; Zhang K; Liang J; Zhu M; Tie Z; Jin Z
    Small; 2023 Sep; 19(39):e2302650. PubMed ID: 37264736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.