These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38230641)

  • 1. Highly Indistinguishable Single Photons from Droplet-Etched GaAs Quantum Dots Integrated in Single-Mode Waveguides and Beamsplitters.
    Hornung F; Pfister U; Bauer S; Cyrlyson's DR; Wang D; Vijayan P; Garcia AJ; Covre da Silva SF; Jetter M; Portalupi SL; Rastelli A; Michler P
    Nano Lett; 2024 Jan; 24(4):1184-1190. PubMed ID: 38230641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Fluorescence of GaAs Quantum Dots with Near-Unity Photon Indistinguishability.
    Schöll E; Hanschke L; Schweickert L; Zeuner KD; Reindl M; Covre da Silva SF; Lettner T; Trotta R; Finley JJ; Müller K; Rastelli A; Zwiller V; Jöns KD
    Nano Lett; 2019 Apr; 19(4):2404-2410. PubMed ID: 30862165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced technologies for quantum photonic devices based on epitaxial quantum dots.
    Zhao TM; Chen Y; Yu Y; Li Q; Davanco M; Liu J
    Adv Quantum Technol; 2020 Feb; 3(2):. PubMed ID: 36452403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source.
    Uppu R; Eriksen HT; Thyrrestrup H; Uğurlu AD; Wang Y; Scholz S; Wieck AD; Ludwig A; Löbl MC; Warburton RJ; Lodahl P; Midolo L
    Nat Commun; 2020 Jul; 11(1):3782. PubMed ID: 32728025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indistinguishable Photons from Deterministically Integrated Single Quantum Dots in Heterogeneous GaAs/Si
    Schnauber P; Singh A; Schall J; Park SI; Song JD; Rodt S; Srinivasan K; Reitzenstein S; Davanco M
    Nano Lett; 2019 Oct; 19(10):7164-7172. PubMed ID: 31470692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum interference of identical photons from remote GaAs quantum dots.
    Zhai L; Nguyen GN; Spinnler C; Ritzmann J; Löbl MC; Wieck AD; Ludwig A; Javadi A; Warburton RJ
    Nat Nanotechnol; 2022 Aug; 17(8):829-833. PubMed ID: 35589820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-Unity Indistinguishability Single Photon Source for Large-Scale Integrated Quantum Optics.
    Dusanowski Ł; Kwon SH; Schneider C; Höfling S
    Phys Rev Lett; 2019 May; 122(17):173602. PubMed ID: 31107087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters.
    Reindl M; Jöns KD; Huber D; Schimpf C; Huo Y; Zwiller V; Rastelli A; Trotta R
    Nano Lett; 2017 Jul; 17(7):4090-4095. PubMed ID: 28557459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of GaAs waveguides on a silicon substrate for quantum photonic circuits.
    Shadmani A; Thomas RA; Liu Z; Papon C; Heck MJR; Volet N; Scholz S; Wieck AD; Ludwig A; Lodahl P; Midolo L
    Opt Express; 2022 Oct; 30(21):37595-37602. PubMed ID: 36258345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Solid-State Source of Single and Entangled Photons at Diamond SiV-Center Transitions Operating at 80K.
    Cao X; Yang J; Fandrich T; Zhang Y; Rugeramigabo EP; Brechtken B; Haug RJ; Zopf M; Ding F
    Nano Lett; 2023 Jul; 23(13):6109-6115. PubMed ID: 37378494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly uniform and symmetric epitaxial InAs quantum dots embedded inside Indium droplet etched nanoholes.
    Yu Y; Zhong H; Yang J; Liu L; Liu J; Yu S
    Nanotechnology; 2019 Nov; 30(48):485001. PubMed ID: 31469109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip scalable highly pure and indistinguishable single-photon sources in ordered arrays: Path to quantum optical circuits.
    Zhang J; Chattaraj S; Huang Q; Jordao L; Lu S; Madhukar A
    Sci Adv; 2022 Sep; 8(35):eabn9252. PubMed ID: 36054351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions.
    Keil R; Zopf M; Chen Y; Höfer B; Zhang J; Ding F; Schmidt OG
    Nat Commun; 2017 May; 8():15501. PubMed ID: 28548092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-Demand Generation of Indistinguishable Photons in the Telecom C-Band Using Quantum Dot Devices.
    Vajner DA; Holewa P; Zięba-Ostój E; Wasiluk M; von Helversen M; Sakanas A; Huck A; Yvind K; Gregersen N; Musiał A; Syperek M; Semenova E; Heindel T
    ACS Photonics; 2024 Feb; 11(2):339-347. PubMed ID: 38405394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices.
    Gurioli M; Wang Z; Rastelli A; Kuroda T; Sanguinetti S
    Nat Mater; 2019 Aug; 18(8):799-810. PubMed ID: 31086322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots.
    Huber D; Reindl M; Huo Y; Huang H; Wildmann JS; Schmidt OG; Rastelli A; Trotta R
    Nat Commun; 2017 May; 8():15506. PubMed ID: 28548081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purcell-Enhanced and Indistinguishable Single-Photon Generation from Quantum Dots Coupled to On-Chip Integrated Ring Resonators.
    Dusanowski Ł; Köck D; Shin E; Kwon SH; Schneider C; Höfling S
    Nano Lett; 2020 Sep; 20(9):6357-6363. PubMed ID: 32706592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance Fluorescence from Waveguide-Coupled, Strain-Localized, Two-Dimensional Quantum Emitters.
    Errando-Herranz C; Schöll E; Picard R; Laini M; Gyger S; Elshaari AW; Branny A; Wennberg U; Barbat S; Renaud T; Sartison M; Brotons-Gisbert M; Bonato C; Gerardot BD; Zwiller V; Jöns KD
    ACS Photonics; 2021 Apr; 8(4):1069-1076. PubMed ID: 34056034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography.
    Schnauber P; Schall J; Bounouar S; Höhne T; Park SI; Ryu GH; Heindel T; Burger S; Song JD; Rodt S; Reitzenstein S
    Nano Lett; 2018 Apr; 18(4):2336-2342. PubMed ID: 29557665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolving the temporal evolution of line broadening in single quantum emitters.
    Schimpf C; Reindl M; Klenovský P; Fromherz T; Covre Da Silva SF; Hofer J; Schneider C; Höfling S; Trotta R; Rastelli A
    Opt Express; 2019 Nov; 27(24):35290-35307. PubMed ID: 31878701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.