BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 38230747)

  • 1. Jak2V617F Reversible Activation Shows Its Essential Requirement in Myeloproliferative Neoplasms.
    Dunbar AJ; Bowman RL; Park YC; O'Connor K; Izzo F; Myers RM; Karzai A; Zaroogian Z; Kim WJ; Fernández-Maestre I; Waarts MR; Nazir A; Xiao W; Codilupi T; Brodsky M; Farina M; Cai L; Cai SF; Wang B; An W; Yang JL; Mowla S; Eisman SE; Hanasoge Somasundara AV; Glass JL; Mishra T; Houston R; Guzzardi E; Martinez Benitez AR; Viny AD; Koche RP; Meyer SC; Landau DA; Levine RL
    Cancer Discov; 2024 May; 14(5):737-751. PubMed ID: 38230747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overview of Transgenic Mouse Models of Myeloproliferative Neoplasms (MPNs).
    Dunbar A; Nazir A; Levine R
    Curr Protoc Pharmacol; 2017 Jun; 77():14.40.1-14.40.19. PubMed ID: 28640953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conditional inducible JAK2V617F transgenic mouse model reveals myeloproliferative disease that is reversible upon switching off transgene expression.
    Chapeau EA; Mandon E; Gill J; Romanet V; Ebel N; Powajbo V; Andraos-Rey R; Qian Z; Kininis M; Zumstein-Mecker S; Ito M; Hynes NE; Tiedt R; Hofmann F; Eshkind L; Bockamp E; Kinzel B; Mueller M; Murakami M; Baffert F; Radimerski T
    PLoS One; 2019; 14(10):e0221635. PubMed ID: 31600213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct effects of concomitant Jak2V617F expression and Tet2 loss in mice promote disease progression in myeloproliferative neoplasms.
    Chen E; Schneider RK; Breyfogle LJ; Rosen EA; Poveromo L; Elf S; Ko A; Brumme K; Levine R; Ebert BL; Mullally A
    Blood; 2015 Jan; 125(2):327-35. PubMed ID: 25281607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crizotinib Has Preclinical Efficacy in Philadelphia-Negative Myeloproliferative Neoplasms.
    Gurska LM; Okabe R; Schurer A; Tong MM; Soto M; Choi D; Ames K; Glushakow-Smith S; Montoya A; Tein E; Miles LA; Cheng H; Hankey-Giblin P; Levine RL; Goel S; Halmos B; Gritsman K
    Clin Cancer Res; 2023 Mar; 29(5):943-956. PubMed ID: 36537918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms.
    Stivala S; Codilupi T; Brkic S; Baerenwaldt A; Ghosh N; Hao-Shen H; Dirnhofer S; Dettmer MS; Simillion C; Kaufmann BA; Chiu S; Keller M; Kleppe M; Hilpert M; Buser AS; Passweg JR; Radimerski T; Skoda RC; Levine RL; Meyer SC
    J Clin Invest; 2019 Mar; 129(4):1596-1611. PubMed ID: 30730307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Development and Use of Janus Kinase 2 Inhibitors for the Treatment of Myeloproliferative Neoplasms.
    Hobbs GS; Rozelle S; Mullally A
    Hematol Oncol Clin North Am; 2017 Aug; 31(4):613-626. PubMed ID: 28673391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell autonomous expression of CXCL-10 in JAK2V617F-mutated MPN.
    Schnöder TM; Eberhardt J; Koehler M; Bierhoff HB; Weinert S; Pandey AD; Nimmagadda SC; Wolleschak D; Jöhrens K; Fischer T; Heidel FH
    J Cancer Res Clin Oncol; 2017 May; 143(5):807-820. PubMed ID: 28233092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of multiple anti-apoptotic BCL2 family proteins recapitulates the effects of JAK2 inhibitors in JAK2V617F driven myeloproliferative neoplasms.
    Takei H; Coelho-Silva JL; Tavares Leal C; Queiroz Arantes Rocha A; Mantello Bianco T; Welner RS; Mishima Y; Kobayashi IS; Mullally A; Lima K; Machado-Neto JA; Kobayashi SS; Lobo de Figueiredo-Pontes L
    Cancer Sci; 2022 Feb; 113(2):597-608. PubMed ID: 34808021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms.
    Quintás-Cardama A; Vaddi K; Liu P; Manshouri T; Li J; Scherle PA; Caulder E; Wen X; Li Y; Waeltz P; Rupar M; Burn T; Lo Y; Kelley J; Covington M; Shepard S; Rodgers JD; Haley P; Kantarjian H; Fridman JS; Verstovsek S
    Blood; 2010 Apr; 115(15):3109-17. PubMed ID: 20130243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depletion of Jak2V617F myeloproliferative neoplasm-propagating stem cells by interferon-α in a murine model of polycythemia vera.
    Mullally A; Bruedigam C; Poveromo L; Heidel FH; Purdon A; Vu T; Austin R; Heckl D; Breyfogle LJ; Kuhn CP; Kalaitzidis D; Armstrong SA; Williams DA; Hill GR; Ebert BL; Lane SW
    Blood; 2013 May; 121(18):3692-702. PubMed ID: 23487027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. JAK-mutant myeloproliferative neoplasms.
    Levine RL
    Curr Top Microbiol Immunol; 2012; 355():119-33. PubMed ID: 21823028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. JAK-2 mutations and their relevance to myeloproliferative disease.
    Levine RL; Gilliland DG
    Curr Opin Hematol; 2007 Jan; 14(1):43-7. PubMed ID: 17133099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How does JAK2V617F contribute to the pathogenesis of myeloproliferative neoplasms?
    Chen E; Mullally A
    Hematology Am Soc Hematol Educ Program; 2014 Dec; 2014(1):268-76. PubMed ID: 25696866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cotreatment with panobinostat and JAK2 inhibitor TG101209 attenuates JAK2V617F levels and signaling and exerts synergistic cytotoxic effects against human myeloproliferative neoplastic cells.
    Wang Y; Fiskus W; Chong DG; Buckley KM; Natarajan K; Rao R; Joshi A; Balusu R; Koul S; Chen J; Savoie A; Ustun C; Jillella AP; Atadja P; Levine RL; Bhalla KN
    Blood; 2009 Dec; 114(24):5024-33. PubMed ID: 19828702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The JAK2 mutation.
    Merchant S
    Int Rev Cell Mol Biol; 2021; 365():117-162. PubMed ID: 34756242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of TET2 has dual roles in murine myeloproliferative neoplasms: disease sustainer and disease accelerator.
    Kameda T; Shide K; Yamaji T; Kamiunten A; Sekine M; Taniguchi Y; Hidaka T; Kubuki Y; Shimoda H; Marutsuka K; Sashida G; Aoyama K; Yoshimitsu M; Harada T; Abe H; Miike T; Iwakiri H; Tahara Y; Sueta M; Yamamoto S; Hasuike S; Nagata K; Iwama A; Kitanaka A; Shimoda K
    Blood; 2015 Jan; 125(2):304-15. PubMed ID: 25395421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. JAK2/IDH-mutant-driven myeloproliferative neoplasm is sensitive to combined targeted inhibition.
    McKenney AS; Lau AN; Somasundara AVH; Spitzer B; Intlekofer AM; Ahn J; Shank K; Rapaport FT; Patel MA; Papalexi E; Shih AH; Chiu A; Freinkman E; Akbay EA; Steadman M; Nagaraja R; Yen K; Teruya-Feldstein J; Wong KK; Rampal R; Vander Heiden MG; Thompson CB; Levine RL
    J Clin Invest; 2018 Feb; 128(2):789-804. PubMed ID: 29355841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis.
    Rampal R; Al-Shahrour F; Abdel-Wahab O; Patel JP; Brunel JP; Mermel CH; Bass AJ; Pretz J; Ahn J; Hricik T; Kilpivaara O; Wadleigh M; Busque L; Gilliland DG; Golub TR; Ebert BL; Levine RL
    Blood; 2014 May; 123(22):e123-33. PubMed ID: 24740812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cotargeting the JAK/STAT signaling pathway and histone deacetylase by ruxolitinib and vorinostat elicits synergistic effects against myeloproliferative neoplasms.
    Hao X; Xing W; Yuan J; Wang Y; Bai J; Bai J; Zhou Y
    Invest New Drugs; 2020 Jun; 38(3):610-620. PubMed ID: 31227936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.