BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38230752)

  • 1. vOARiability: Interobserver and intermodality variability analysis in OAR contouring from head and neck CT and MR images.
    Podobnik G; Ibragimov B; Peterlin P; Strojan P; Vrtovec T
    Med Phys; 2024 Mar; 51(3):2175-2186. PubMed ID: 38230752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AAR-RT - A system for auto-contouring organs at risk on CT images for radiation therapy planning: Principles, design, and large-scale evaluation on head-and-neck and thoracic cancer cases.
    Wu X; Udupa JK; Tong Y; Odhner D; Pednekar GV; Simone CB; McLaughlin D; Apinorasethkul C; Apinorasethkul O; Lukens J; Mihailidis D; Shammo G; James P; Tiwari A; Wojtowicz L; Camaratta J; Torigian DA
    Med Image Anal; 2019 May; 54():45-62. PubMed ID: 30831357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric and dosimetric analysis of CT- and MR-based automatic contouring for the EPTN contouring atlas in neuro-oncology.
    Vaassen F; Zegers CML; Hofstede D; Wubbels M; Beurskens H; Verheesen L; Canters R; Looney P; Battye M; Gooding MJ; Compter I; Eekers DBP; van Elmpt W
    Phys Med; 2023 Oct; 114():103156. PubMed ID: 37813050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Deep Learning to Augment Image-Guided Radiotherapy for Head and Neck and Prostate Cancers.
    Oktay O; Nanavati J; Schwaighofer A; Carter D; Bristow M; Tanno R; Jena R; Barnett G; Noble D; Rimmer Y; Glocker B; O'Hara K; Bishop C; Alvarez-Valle J; Nori A
    JAMA Netw Open; 2020 Nov; 3(11):e2027426. PubMed ID: 33252691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contouring of emerging organs-at-risk (OARS) of the female pelvis and interobserver variability: A study by the Italian association of radiotherapy and clinical oncology (AIRO).
    Augurio A; Macchia G; Caravatta L; Lucarelli M; Di Gugliemo F; Vinciguerra A; Seccia B; De Sanctis V; Autorino R; Delle Curti C; Meregalli S; Perrucci E; Raspanti D; Cerrotta A
    Clin Transl Radiat Oncol; 2023 Nov; 43():100688. PubMed ID: 37854671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial Evaluation of a Novel Cone-Beam CT-Based Semi-Automated Online Adaptive Radiotherapy System for Head and Neck Cancer Treatment - A Timing and Automation Quality Study.
    Yoon SW; Lin H; Alonso-Basanta M; Anderson N; Apinorasethkul O; Cooper K; Dong L; Kempsey B; Marcel J; Metz J; Scheuermann R; Li T
    Cureus; 2020 Aug; 12(8):e9660. PubMed ID: 32923257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning algorithm performance in contouring head and neck organs at risk: a systematic review and single-arm meta-analysis.
    Liu P; Sun Y; Zhao X; Yan Y
    Biomed Eng Online; 2023 Nov; 22(1):104. PubMed ID: 37915046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks.
    Ibragimov B; Xing L
    Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic CT-aided multiorgan segmentation for CBCT-guided adaptive pancreatic radiotherapy.
    Dai X; Lei Y; Wynne J; Janopaul-Naylor J; Wang T; Roper J; Curran WJ; Liu T; Patel P; Yang X
    Med Phys; 2021 Nov; 48(11):7063-7073. PubMed ID: 34609745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of T2-Weighted MRI for Visualization and Sparing of Urethra with MR-Guided Radiation Therapy (MRgRT) On-Board MRI.
    Pham J; Savjani RR; Gao Y; Cao M; Hu P; Sheng K; Low DA; Steinberg M; Kishan AU; Yang Y
    Cancers (Basel); 2021 Jul; 13(14):. PubMed ID: 34298777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pilot study on interobserver variability in organ-at-risk contours in magnetic resonance imaging-guided online adaptive radiotherapy for pancreatic cancer.
    Kurokawa M; Tsuneda M; Abe K; Ikeda Y; Kanazawa A; Saito M; Kodate A; Harada R; Yokota H; Watanabe M; Uno T
    Front Oncol; 2024; 14():1335623. PubMed ID: 38800394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring.
    van Dijk LV; Van den Bosch L; Aljabar P; Peressutti D; Both S; J H M Steenbakkers R; Langendijk JA; Gooding MJ; Brouwer CL
    Radiother Oncol; 2020 Jan; 142():115-123. PubMed ID: 31653573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HaN-Seg: The head and neck organ-at-risk CT and MR segmentation dataset.
    Podobnik G; Strojan P; Peterlin P; Ibragimov B; Vrtovec T
    Med Phys; 2023 Mar; 50(3):1917-1927. PubMed ID: 36594372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformable image registration for composite planned doses during adaptive radiation therapy.
    Torchia J; Velec M
    J Med Imaging Radiat Sci; 2024 Mar; 55(1):82-90. PubMed ID: 38218679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic resonance imaging in the radiation treatment planning of localized prostate cancer using intra-prostatic fiducial markers for computed tomography co-registration.
    Parker CC; Damyanovich A; Haycocks T; Haider M; Bayley A; Catton CN
    Radiother Oncol; 2003 Feb; 66(2):217-24. PubMed ID: 12648794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospective assessment of an atlas-based intervention combined with real-time software feedback in contouring lymph node levels and organs-at-risk in the head and neck: Quantitative assessment of conformance to expert delineation.
    Awan M; Kalpathy-Cramer J; Gunn GB; Beadle BM; Garden AS; Phan J; Holliday E; Jones WE; Maani E; Patel A; Choi J; Clyburn V; Tantiwongkosi B; Rosenthal DI; Fuller CD
    Pract Radiat Oncol; 2013; 3(3):186-193. PubMed ID: 24674363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contouring practices and artefact management within a synthetic CT-based radiotherapy workflow for the central nervous system.
    Rossi E; Emin S; Gubanski M; Gagliardi G; Hedman M; Villegas F
    Radiat Oncol; 2024 Feb; 19(1):27. PubMed ID: 38424642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the Hounsfield unit assignment and dose differences between CT-based standard and deep learning-based synthetic CT images for MRI-only radiation therapy of the head and neck.
    Singhrao K; Dugan CL; Calvin C; Pelayo L; Yom SS; Chan JW; Scholey JE; Singer L
    J Appl Clin Med Phys; 2024 Jan; 25(1):e14239. PubMed ID: 38128040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study.
    Choi MS; Chang JS; Kim K; Kim JH; Kim TH; Kim S; Cha H; Cho O; Choi JH; Kim M; Kim J; Kim TG; Yeo SG; Chang AR; Ahn SJ; Choi J; Kang KM; Kwon J; Koo T; Kim MY; Choi SH; Jeong BK; Jang BS; Jo IY; Lee H; Kim N; Park HJ; Im JH; Lee SW; Cho Y; Lee SY; Chang JH; Chun J; Lee EM; Kim JS; Shin KH; Kim YB
    Breast; 2024 Feb; 73():103599. PubMed ID: 37992527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.