These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 38230837)
1. Prior Clinico-Radiological Features Informed Multi-Modal MR Images Convolution Neural Network: A novel deep learning framework for prediction of lymphovascular invasion in breast cancer. Zheng H; Jian L; Li L; Liu W; Chen W Cancer Med; 2024 Feb; 13(3):e6932. PubMed ID: 38230837 [TBL] [Abstract][Full Text] [Related]
2. Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast-Enhanced MRI. Yang X; Fan X; Lin S; Zhou Y; Liu H; Wang X; Zuo Z; Zeng Y J Magn Reson Imaging; 2024 Jun; 59(6):2238-2249. PubMed ID: 37855421 [TBL] [Abstract][Full Text] [Related]
3. Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics. Liu Z; Feng B; Li C; Chen Y; Chen Q; Li X; Guan J; Chen X; Cui E; Li R; Li Z; Long W J Magn Reson Imaging; 2019 Sep; 50(3):847-857. PubMed ID: 30773770 [TBL] [Abstract][Full Text] [Related]
4. Predictive value of MRI-based deep learning model for lymphovascular invasion status in node-negative invasive breast cancer. Liang R; Li F; Yao J; Tong F; Hua M; Liu J; Shi C; Sui L; Lu H Sci Rep; 2024 Jul; 14(1):16204. PubMed ID: 39003325 [TBL] [Abstract][Full Text] [Related]
5. A comprehensive approach for evaluating lymphovascular invasion in invasive breast cancer: Leveraging multimodal MRI findings, radiomics, and deep learning analysis of intra- and peritumoral regions. Liu W; Li L; Deng J; Li W Comput Med Imaging Graph; 2024 Sep; 116():102415. PubMed ID: 39032451 [TBL] [Abstract][Full Text] [Related]
6. Delta-Radiomics Based on Dynamic Contrast-Enhanced MRI for Predicting Lymphovascular Invasion in Invasive Breast Cancer. Zheng H; Jian L; Li L; Liu W; Chen W Acad Radiol; 2024 May; 31(5):1762-1772. PubMed ID: 38092588 [TBL] [Abstract][Full Text] [Related]
7. A clinical-radiomics model incorporating T2-weighted and diffusion-weighted magnetic resonance images predicts the existence of lymphovascular invasion / perineural invasion in patients with colorectal cancer. Zhang K; Ren Y; Xu S; Lu W; Xie S; Qu J; Wang X; Shen B; Pang P; Cai X; Sun J Med Phys; 2021 Sep; 48(9):4872-4882. PubMed ID: 34042185 [TBL] [Abstract][Full Text] [Related]
8. Radiomics-based analysis of dynamic contrast-enhanced magnetic resonance image: A prediction nomogram for lymphovascular invasion in breast cancer. Yang X; Wang X; Zuo Z; Zeng W; Liu H; Zhou L; Wen Y; Long C; Tan S; Li X; Zeng Y Magn Reson Imaging; 2024 Oct; 112():89-99. PubMed ID: 38971267 [TBL] [Abstract][Full Text] [Related]
9. Biparametric magnetic resonance imaging-based radiomics features for prediction of lymphovascular invasion in rectal cancer. Tong P; Sun D; Chen G; Ni J; Li Y BMC Cancer; 2023 Jan; 23(1):61. PubMed ID: 36650498 [TBL] [Abstract][Full Text] [Related]
10. Multiparametric MRI-based radiomics nomogram for preoperative prediction of lymphovascular invasion and clinical outcomes in patients with breast invasive ductal carcinoma. Zhang J; Wang G; Ren J; Yang Z; Li D; Cui Y; Yang X Eur Radiol; 2022 Jun; 32(6):4079-4089. PubMed ID: 35050415 [TBL] [Abstract][Full Text] [Related]
11. MRI-Based Radiomics for Preoperative Prediction of Lymphovascular Invasion in Patients With Invasive Breast Cancer. Nijiati M; Aihaiti D; Huojia A; Abulizi A; Mutailifu S; Rouzi N; Dai G; Maimaiti P Front Oncol; 2022; 12():876624. PubMed ID: 35734595 [TBL] [Abstract][Full Text] [Related]
12. Clinical study on the prediction of ALN metastasis based on intratumoral and peritumoral DCE-MRI radiomics and clinico-radiological characteristics in breast cancer. Wang Y; Shang Y; Guo Y; Hai M; Gao Y; Wu Q; Li S; Liao J; Sun X; Wu Y; Wang M; Tan H Front Oncol; 2024; 14():1357145. PubMed ID: 38567148 [TBL] [Abstract][Full Text] [Related]
13. Integrating MRI-based radiomics and clinicopathological features for preoperative prognostication of early-stage cervical adenocarcinoma patients: in comparison to deep learning approach. Qiu H; Wang M; Wang S; Li X; Wang D; Qin Y; Xu Y; Yin X; Hacker M; Han S; Li X Cancer Imaging; 2024 Aug; 24(1):101. PubMed ID: 39090668 [TBL] [Abstract][Full Text] [Related]
14. Prediction of Lymphovascular invasion status in breast cancer based on magnetic resonance imaging radiomics features. Li X; Luo K; Zhang N; Chen W; Li B; Lu Z; Chen Y; Wu K Magn Reson Imaging; 2024 Jun; 109():91-95. PubMed ID: 38467265 [TBL] [Abstract][Full Text] [Related]
15. MRI radiomics for the preoperative evaluation of lymphovascular invasion in breast cancer: A meta-analysis. Ma Q; Li Z; Li W; Chen Q; Liu X; Feng W; Lei J Eur J Radiol; 2023 Nov; 168():111127. PubMed ID: 37801997 [TBL] [Abstract][Full Text] [Related]
16. A Novel Multimodal Radiomics Model for Preoperative Prediction of Lymphovascular Invasion in Rectal Cancer. Zhang Y; He K; Guo Y; Liu X; Yang Q; Zhang C; Xie Y; Mu S; Guo Y; Fu Y; Zhang H Front Oncol; 2020; 10():457. PubMed ID: 32328460 [No Abstract] [Full Text] [Related]
17. MRI Radiomics of Breast Cancer: Machine Learning-Based Prediction of Lymphovascular Invasion Status. Kayadibi Y; Kocak B; Ucar N; Akan YN; Yildirim E; Bektas S Acad Radiol; 2022 Jan; 29 Suppl 1():S126-S134. PubMed ID: 34876340 [TBL] [Abstract][Full Text] [Related]
18. Ultrasound-Based Deep Learning Radiomics Nomogram for the Assessment of Lymphovascular Invasion in Invasive Breast Cancer: A Multicenter Study. Zhang D; Zhou W; Lu WW; Qin XC; Zhang XY; Wang JL; Wu J; Luo YH; Duan YY; Zhang CX Acad Radiol; 2024 Oct; 31(10):3917-3928. PubMed ID: 38658211 [TBL] [Abstract][Full Text] [Related]
19. Automated breast volume scanner based Radiomics for non-invasively prediction of lymphovascular invasion status in breast cancer. Li Y; Wu X; Yan Y; Zhou P BMC Cancer; 2023 Aug; 23(1):813. PubMed ID: 37648970 [TBL] [Abstract][Full Text] [Related]
20. Predicting lymphovascular invasion in clinically node-negative breast cancer detected by abbreviated magnetic resonance imaging: Transfer learning vs. radiomics. Feng B; Liu Z; Liu Y; Chen Y; Zhou H; Cui E; Li X; Chen X; Li R; Yu T; Zhang L; Long W Front Oncol; 2022; 12():890659. PubMed ID: 36185309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]