These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 38230863)

  • 1. The Potential of Electrospinning to Enable the Realization of Energy-Autonomous Wearable Sensing Systems.
    Dinuwan Gunawardhana KRS; Simorangkir RBVB; McGuinness GB; Rasel MS; Magre Colorado LA; Baberwal SS; Ward TE; O'Flynn B; Coyle SM
    ACS Nano; 2024 Jan; 18(4):2649-2684. PubMed ID: 38230863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid dual-function thermal energy harvesting and storage technologies: towards self-chargeable flexible/wearable devices.
    Teixeira JS; Costa RS; Pires AL; Pereira AM; Pereira C
    Dalton Trans; 2021 Jul; 50(29):9983-10013. PubMed ID: 34264261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.
    Lou Z; Li L; Wang L; Shen G
    Small; 2017 Dec; 13(45):. PubMed ID: 29076297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review on the Progress in Core-Spun Yarns (CSYs) Based Textile TENGs for Real-Time Energy Generation, Capture and Sensing.
    Aliyana AK; Stylios G
    Adv Sci (Weinh); 2023 Oct; 10(29):e2304232. PubMed ID: 37607119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Interface Engineering of MXenes for Self-Powered Wearable Devices.
    Liu C; Feng Z; Yin T; Wan T; Guan P; Li M; Hu L; Lin CH; Han Z; Xu H; Chen W; Wu T; Liu G; Zhou Y; Peng S; Wang C; Chu D
    Adv Mater; 2024 May; ():e2403791. PubMed ID: 38780429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable Near-Field Communication Sensors for Healthcare: Materials, Fabrication and Application.
    Sun X; Zhao C; Li H; Yu H; Zhang J; Qiu H; Liang J; Wu J; Su M; Shi Y; Pan L
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics.
    Meng X; Cai C; Luo B; Liu T; Shao Y; Wang S; Nie S
    Nanomicro Lett; 2023 May; 15(1):124. PubMed ID: 37166487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review of Solar Energy Harvesting Electronic Textiles.
    Satharasinghe A; Hughes-Riley T; Dias T
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33096633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Powered Sensing in Wearable Electronics─A Paradigm Shift Technology.
    Tang W; Sun Q; Wang ZL
    Chem Rev; 2023 Nov; 123(21):12105-12134. PubMed ID: 37871288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave Resonators for Wearable Sensors Design: A Systematic Review.
    Royo I; Fernández-García R; Gil I
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust Piezoelectric Biomolecular Membranes from Eggshell Protein for Wearable Sensors.
    Liang X; Xu H; Cong H; Wan X; Liu L; Li Y; Liu C; Chen C; Jiang G; Asadi K; He H
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):55790-55802. PubMed ID: 38009467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging Devices Based on Two-Dimensional Monolayer Materials for Energy Harvesting.
    Fan FR; Wu W
    Research (Wash D C); 2019; 2019():7367828. PubMed ID: 31912044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous and Scalable Manufacture of Hybridized Nano-Micro Triboelectric Yarns for Energy Harvesting and Signal Sensing.
    Ma L; Zhou M; Wu R; Patil A; Gong H; Zhu S; Wang T; Zhang Y; Shen S; Dong K; Yang L; Wang J; Guo W; Wang ZL
    ACS Nano; 2020 Apr; 14(4):4716-4726. PubMed ID: 32255615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application Challenges in Fiber and Textile Electronics.
    Wang L; Fu X; He J; Shi X; Chen T; Chen P; Wang B; Peng H
    Adv Mater; 2020 Feb; 32(5):e1901971. PubMed ID: 31273843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully stretchable textile-based triboelectric nanogenerators with crepe-paper-induced surface microstructures.
    Kim DE; Shin S; Zhang G; Choi D; Jung J
    RSC Adv; 2023 Apr; 13(16):11142-11149. PubMed ID: 37056967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Progress in Wireless Sensors for Wearable Electronics.
    Park YG; Lee S; Park JU
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31600870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in liquid-metal-based wearable electronics and materials.
    Won P; Jeong S; Majidi C; Ko SH
    iScience; 2021 Jul; 24(7):102698. PubMed ID: 34195573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Textile-Based Triboelectric Nanogenerators for Wearable Self-Powered Microsystems.
    Huang P; Wen DL; Qiu Y; Yang MH; Tu C; Zhong HS; Zhang XS
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33562717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances and Challenges Toward Application of Fibers and Textiles in Integrated Photovoltaic Energy Storage Devices.
    Rafique A; Ferreira I; Abbas G; Baptista AC
    Nanomicro Lett; 2023 Jan; 15(1):40. PubMed ID: 36662335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.