These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38230871)
1. Interior-Confined Vacancy in Potassium Manganese Hexacyanoferrate for Ultra-Stable Potassium-Ion Batteries. Li X; Guo T; Shang Y; Zheng T; Jia B; Niu X; Zhu Y; Wang Z Adv Mater; 2024 Apr; 36(15):e2310428. PubMed ID: 38230871 [TBL] [Abstract][Full Text] [Related]
2. Size-, Water-, and Defect-Regulated Potassium Manganese Hexacyanoferrate with Superior Cycling Stability and Rate Capability for Low-Cost Sodium-Ion Batteries. Zhou A; Xu Z; Gao H; Xue L; Li J; Goodenough JB Small; 2019 Oct; 15(42):e1902420. PubMed ID: 31469502 [TBL] [Abstract][Full Text] [Related]
3. Polypyrrole-Coated K Chen M; Li X; Yan Y; Yang Y; Xu Q; Liu H; Xia Y ACS Appl Mater Interfaces; 2022 Jan; 14(1):1092-1101. PubMed ID: 34968036 [TBL] [Abstract][Full Text] [Related]
4. Cubic Manganese Potassium Hexacyanoferrate Regulated by Controlling of the Water and Defects as a High-Capacity and Stable Cathode Material for Rechargeable Aqueous Zinc-Ion Batteries. Cao T; Zhang F; Chen M; Shao T; Li Z; Xu Q; Cheng D; Liu H; Xia Y ACS Appl Mater Interfaces; 2021 Jun; 13(23):26924-26935. PubMed ID: 34060801 [TBL] [Abstract][Full Text] [Related]
5. Heat-Resistant Carbon-Coated Potassium Magnesium Hexacyanoferrate Nanoplates for High-Performance Potassium-Ion Batteries. Liao J; Yuan Z; Hu Q; Sheng X; Song L; Xu Y; Du Y; Zhou X Angew Chem Int Ed Engl; 2024 Aug; 63(35):e202409145. PubMed ID: 38869085 [TBL] [Abstract][Full Text] [Related]
6. Defect-free potassium manganese hexacyanoferrate cathode material for high-performance potassium-ion batteries. Deng L; Qu J; Niu X; Liu J; Zhang J; Hong Y; Feng M; Wang J; Hu M; Zeng L; Zhang Q; Guo L; Zhu Y Nat Commun; 2021 Apr; 12(1):2167. PubMed ID: 33846311 [TBL] [Abstract][Full Text] [Related]
7. Topotactic Epitaxy Self-Assembly of Potassium Manganese Hexacyanoferrate Superstructures for Highly Reversible Sodium-Ion Batteries. Li X; Shang Y; Yan D; Guo L; Huang S; Yang HY ACS Nano; 2022 Jan; 16(1):453-461. PubMed ID: 34978811 [TBL] [Abstract][Full Text] [Related]
8. Inhibiting the Jahn-Teller Effect of Manganese Hexacyanoferrate via Ni and Cu Codoping for Advanced Sodium-Ion Batteries. Luo Y; Shen J; Yao Y; Dai J; Ling F; Li L; Jiang Y; Wu X; Rui X; Yu Y Adv Mater; 2024 Aug; 36(32):e2405458. PubMed ID: 38839062 [TBL] [Abstract][Full Text] [Related]
9. Electrolyte Design Enables Stable and Energy-Dense Potassium-Ion Batteries. Zhang Z; Wang X; Zhu J; Li N; Wang L; Yang Y; Chen Y; Tan L; Niu X; Wang X; Ji X; Zhu Y Angew Chem Int Ed Engl; 2024 Oct; ():e202415491. PubMed ID: 39387157 [TBL] [Abstract][Full Text] [Related]
10. Rhombohedral Potassium-Zinc Hexacyanoferrate as a Cathode Material for Nonaqueous Potassium-Ion Batteries. Heo JW; Chae MS; Hyoung J; Hong ST Inorg Chem; 2019 Mar; 58(5):3065-3072. PubMed ID: 30767512 [TBL] [Abstract][Full Text] [Related]
11. Manipulating the Solvation Structure of Nonflammable Electrolyte and Interface to Enable Unprecedented Stability of Graphite Anodes beyond 2 Years for Safe Potassium-Ion Batteries. Liu S; Mao J; Zhang L; Pang WK; Du A; Guo Z Adv Mater; 2021 Jan; 33(1):e2006313. PubMed ID: 33225551 [TBL] [Abstract][Full Text] [Related]
12. Intercalation of Al Zheng J; Yi K; Chang C Small Methods; 2024 Aug; ():e2401000. PubMed ID: 39212650 [TBL] [Abstract][Full Text] [Related]
13. Highly-Solvating Electrolyte Enables Mechanically Stable and Inorganic-Rich Cathode Electrolyte Interphase for High-Performing Potassium-Ion Batteries. Zhao S; Li G; Zhang B; Zhang S; Liu Y; Zhou J; Luo M; Guo S Adv Mater; 2024 Aug; 36(32):e2405184. PubMed ID: 38777567 [TBL] [Abstract][Full Text] [Related]
14. Influence of Vacancies in Manganese Hexacyanoferrate Cathode for Organic Na-Ion Batteries: A Structural Perspective. Li M; Gaboardi M; Mullaliu A; Maisuradze M; Xue X; Aquilanti G; Rikkert Plaisier J; Passerini S; Giorgetti M ChemSusChem; 2023 Jun; 16(12):e202300201. PubMed ID: 36852937 [TBL] [Abstract][Full Text] [Related]
15. Effect of Particle Size and Anion Vacancy on Electrochemical Potassium Ion Insertion into Potassium Manganese Hexacyanoferrates. Hosaka T; Fukabori T; Kojima H; Kubota K; Komaba S ChemSusChem; 2021 Feb; 14(4):1166-1175. PubMed ID: 33369231 [TBL] [Abstract][Full Text] [Related]
16. Electrolyte Engineering with Tamed Electrode Interphases for High-Voltage Sodium-Ion Batteries. Liu Y; Zhu L; Wang E; An Y; Liu Y; Shen K; He M; Jia Y; Ye G; Xiao Z; Li Y; Pang Q Adv Mater; 2024 Apr; 36(15):e2310051. PubMed ID: 38145580 [TBL] [Abstract][Full Text] [Related]
17. Dual stabilization in potassium Prussian blue and cathode/electrolyte interface enables advanced potassium-ion full-cells. Lin Y; Liu J; Shi L; Guo N; Sun Z; Geng C; Jiang J; Zhuang Q; Chen Y; Ju Z J Colloid Interface Sci; 2022 Oct; 623():1-8. PubMed ID: 35561573 [TBL] [Abstract][Full Text] [Related]
18. Stabilizing Zinc Hexacyanoferrate Cathode by Low Contents of Cs Cations for Aqueous Zn-Ion Batteries. Pan Z; Ni G; Li Y; Shi Y; Zhu F; Cui P; Zhou C ChemSusChem; 2024 Nov; 17(21):e202400713. PubMed ID: 38785104 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Electrochemical Performance of Sodium Manganese Ferrocyanide by Na Peng F; Yu L; Yuan S; Liao XZ; Wen J; Tan G; Feng F; Ma ZF ACS Appl Mater Interfaces; 2019 Oct; 11(41):37685-37692. PubMed ID: 31525888 [TBL] [Abstract][Full Text] [Related]
20. A Low-Strain Potassium-Rich Prussian Blue Analogue Cathode for High Power Potassium-Ion Batteries. Li L; Hu Z; Lu Y; Wang C; Zhang Q; Zhao S; Peng J; Zhang K; Chou SL; Chen J Angew Chem Int Ed Engl; 2021 Jun; 60(23):13050-13056. PubMed ID: 33780584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]