These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38230985)

  • 1. Tuning the Mechanical Properties of 3D-printed Objects by the RAFT Process: From Chain-Growth to Step-Growth.
    Pan X; Li J; Li Z; Li Q; Pan X; Zhang Z; Zhu J
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202318564. PubMed ID: 38230985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the Mechanical Properties of 3D-Printed Objects by Mixing Chain Transfer Agents in Norrish Type I Photoinitiated RAFT Polymerization.
    Yuan Z; Li G; Yang C; Zhu W; Li J; Zhu J
    Chem Asian J; 2024 Sep; 19(18):e202400648. PubMed ID: 38946109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the Mechanical Properties of 3D-printed Objects by Mixing Chain Transfer Agents in Radical Promoted Cationic RAFT Polymerization.
    Li G; Zhao B; Zhu Y; He S; Li J; Zhu J; Li N
    Macromol Rapid Commun; 2024 Nov; 45(22):e2400515. PubMed ID: 39122478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Versatile 3D and 4D Printing System through Photocontrolled RAFT Polymerization.
    Zhang Z; Corrigan N; Bagheri A; Jin J; Boyer C
    Angew Chem Int Ed Engl; 2019 Dec; 58(50):17954-17963. PubMed ID: 31642580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast Living 3D Printing via Free Radical Promoted Cationic RAFT Polymerization.
    Zhao B; Li J; Li G; Yang X; Lu S; Pan X; Zhu J
    Small; 2023 Dec; 19(50):e2207637. PubMed ID: 36707417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid High-Resolution 3D Printing and Surface Functionalization via Type I Photoinitiated RAFT Polymerization.
    Lee K; Corrigan N; Boyer C
    Angew Chem Int Ed Engl; 2021 Apr; 60(16):8839-8850. PubMed ID: 33449437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printing and In Situ Surface Modification via Type I Photoinitiated Reversible Addition-Fragmentation Chain Transfer Polymerization.
    Corrigan N; Boyer C
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35253792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoinduced Free Radical Promoted Cationic RAFT Polymerization toward "Living" 3D Printing.
    Zhao B; Li J; Pan X; Zhang Z; Jin G; Zhu J
    ACS Macro Lett; 2021 Oct; 10(10):1315-1320. PubMed ID: 35549049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards 3D printed multifunctional immobilization for proton therapy: Initial materials characterization.
    Michiels S; D'Hollander A; Lammens N; Kersemans M; Zhang G; Denis JM; Poels K; Sterpin E; Nuyts S; Haustermans K; Depuydt T
    Med Phys; 2016 Oct; 43(10):5392. PubMed ID: 27782703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Photoinduced Dual-Wavelength Approach for 3D Printing and Self-Healing of Thermosetting Materials.
    Zhang Z; Corrigan N; Boyer C
    Angew Chem Int Ed Engl; 2022 Mar; 61(11):e202114111. PubMed ID: 34859952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-Demand Tunability of Microphase Separation Structure of 3D Printing Material by Reversible Addition/Fragmentation Chain Transfer Polymerization.
    Mukai M; Sato M; Miyadai W; Maruo S
    Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Step-growth polymerization by the RAFT process.
    Tanaka J; Li J; Clouthier SM; You W
    Chem Commun (Camb); 2023 Jun; 59(53):8168-8189. PubMed ID: 37287313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Macromolecular Structure on Phase Separation Regime in 3D Printed Materials.
    Xiu Y; Bobrin VA; Corrigan N; Zhang J; Boyer C
    Macromol Rapid Commun; 2023 Dec; 44(24):e2300236. PubMed ID: 37289980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties, accuracy, and cytotoxicity of UV-polymerized 3D printing resins composed of Bis-EMA, UDMA, and TEGDMA.
    Lin CH; Lin YM; Lai YL; Lee SY
    J Prosthet Dent; 2020 Feb; 123(2):349-354. PubMed ID: 31202550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Digital Light 3D Printing of Double Thermoplastics with Customizable Mechanical Properties and Versatile Reprocessability.
    Zhu G; von Coelln N; Hou Y; Vazquez-Martel C; Spiegel CA; Tegeder P; Blasco E
    Adv Mater; 2024 Aug; 36(33):e2401561. PubMed ID: 38949414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printed Solid Polymer Electrolytes with Bicontinuous Nanoscopic Domains for Ionic Liquid Conduction and Energy Storage.
    Melodia D; Bhadra A; Lee K; Kuchel R; Kundu D; Corrigan N; Boyer C
    Small; 2023 Dec; 19(50):e2206639. PubMed ID: 36737816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano- to macro-scale control of 3D printed materials via polymerization induced microphase separation.
    Bobrin VA; Yao Y; Shi X; Xiu Y; Zhang J; Corrigan N; Boyer C
    Nat Commun; 2022 Jun; 13(1):3577. PubMed ID: 35732624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructure Control in 3D Printed Materials.
    Bobrin VA; Lee K; Zhang J; Corrigan N; Boyer C
    Adv Mater; 2022 Jan; 34(4):e2107643. PubMed ID: 34742167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalyst-Free, Visible-Light-Induced Step-Growth Polymerization by a Photo-RAFT Single-Unit Monomer Insertion Reaction.
    Li Z; Li J; Pan X; Zhang Z; Zhu J
    ACS Macro Lett; 2022 Feb; 11(2):230-235. PubMed ID: 35574774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.