BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38231003)

  • 1. Image-Based Subtype Classification for Glioblastoma Using Deep Learning: Prognostic Significance and Biologic Relevance.
    Yuan M; Ding H; Guo B; Yang M; Yang Y; Xu XS
    JCO Clin Cancer Inform; 2024 Jan; 8():e2300154. PubMed ID: 38231003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Immune Subtypes and Landscape of Gastric Cancer and to Predict Based on the Whole-Slide Images Using Deep Learning.
    Chen Y; Sun Z; Chen W; Liu C; Chai R; Ding J; Liu W; Feng X; Zhou J; Shen X; Huang S; Xu Z
    Front Immunol; 2021; 12():685992. PubMed ID: 34262565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning revealed stemness features and a novel stemness-based classification with appealing implications in discriminating the prognosis, immunotherapy and temozolomide responses of 906 glioblastoma patients.
    Wang Z; Wang Y; Yang T; Xing H; Wang Y; Gao L; Guo X; Xing B; Wang Y; Ma W
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33839757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mir-21-Sox2 Axis Delineates Glioblastoma Subtypes with Prognostic Impact.
    Sathyan P; Zinn PO; Marisetty AL; Liu B; Kamal MM; Singh SK; Bady P; Lu L; Wani KM; Veo BL; Gumin J; Kassem DH; Robinson F; Weng C; Baladandayuthapani V; Suki D; Colman H; Bhat KP; Sulman EP; Aldape K; Colen RR; Verhaak RG; Lu Z; Fuller GN; Huang S; Lang FF; Sawaya R; Hegi M; Majumder S
    J Neurosci; 2015 Nov; 35(45):15097-112. PubMed ID: 26558781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Cell Spatial Analysis of Tumor and Immune Microenvironment on Whole-Slide Image Reveals Hepatocellular Carcinoma Subtypes.
    Wang H; Jiang Y; Li B; Cui Y; Li D; Li R
    Cancers (Basel); 2020 Nov; 12(12):. PubMed ID: 33260561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning image-based intrinsic molecular subtype classifier of breast tumors reveals tumor heterogeneity that may affect survival.
    Jaber MI; Song B; Taylor C; Vaske CJ; Benz SC; Rabizadeh S; Soon-Shiong P; Szeto CW
    Breast Cancer Res; 2020 Jan; 22(1):12. PubMed ID: 31992350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image-based deep learning identifies glioblastoma risk groups with genomic and transcriptomic heterogeneity: a multi-center study.
    Yan J; Sun Q; Tan X; Liang C; Bai H; Duan W; Mu T; Guo Y; Qiu Y; Wang W; Yao Q; Pei D; Zhao Y; Liu D; Duan J; Chen S; Sun C; Wang W; Liu Z; Hong X; Wang X; Guo Y; Xu Y; Liu X; Cheng J; Li ZC; Zhang Z
    Eur Radiol; 2023 Feb; 33(2):904-914. PubMed ID: 36001125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts.
    Fremond S; Andani S; Barkey Wolf J; Dijkstra J; Melsbach S; Jobsen JJ; Brinkhuis M; Roothaan S; Jurgenliemk-Schulz I; Lutgens LCHW; Nout RA; van der Steen-Banasik EM; de Boer SM; Powell ME; Singh N; Mileshkin LR; Mackay HJ; Leary A; Nijman HW; Smit VTHBM; Creutzberg CL; Horeweg N; Koelzer VH; Bosse T
    Lancet Digit Health; 2023 Feb; 5(2):e71-e82. PubMed ID: 36496303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic identification, development, and validation of prognostic biomarkers involving the tumor-immune microenvironment for glioblastoma.
    Zhao B; Wang Y; Wang Y; Chen W; Liu PH; Kong Z; Dai C; Wang Y; Ma W
    J Cell Physiol; 2021 Jan; 236(1):507-522. PubMed ID: 32572951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study.
    Veldhuizen GP; Röcken C; Behrens HM; Cifci D; Muti HS; Yoshikawa T; Arai T; Oshima T; Tan P; Ebert MP; Pearson AT; Calderaro J; Grabsch HI; Kather JN
    Gastric Cancer; 2023 Sep; 26(5):708-720. PubMed ID: 37269416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights for precision treatment of glioblastoma from analysis of single-cell lncRNA expression.
    Meng Q; Zhang Y; Li G; Li Y; Xie H; Chen X
    J Cancer Res Clin Oncol; 2021 Jul; 147(7):1881-1895. PubMed ID: 33693962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme.
    Lao J; Chen Y; Li ZC; Li Q; Zhang J; Liu J; Zhai G
    Sci Rep; 2017 Sep; 7(1):10353. PubMed ID: 28871110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep convolutional neural network for segmentation of whole-slide pathology images identifies novel tumour cell-perivascular niche interactions that are associated with poor survival in glioblastoma.
    Zadeh Shirazi A; McDonnell MD; Fornaciari E; Bagherian NS; Scheer KG; Samuel MS; Yaghoobi M; Ormsby RJ; Poonnoose S; Tumes DJ; Gomez GA
    Br J Cancer; 2021 Aug; 125(3):337-350. PubMed ID: 33927352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially aware graph neural networks and cross-level molecular profile prediction in colon cancer histopathology: a retrospective multi-cohort study.
    Ding K; Zhou M; Wang H; Zhang S; Metaxas DN
    Lancet Digit Health; 2022 Nov; 4(11):e787-e795. PubMed ID: 36307192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA sequencing and Immunohistochemistry Reveal
    Esteve-Codina A; Alameda F; Carrato C; Pineda E; Arpí O; Martinez-García M; Mallo M; Gut M; Dabad M; Tortosa A; Del Barco S; Capellades J; Puig J; Gallego O; Pujol T; Oleaga L; Gil-Gil M; de Quintana-Schmidt C; Valduvieco I; Martinez-Cardús A; Bellosillo B; Muñoz-Marmol AM; Esteve A; Domenech M; Camins A; Craven-Bartle J; Villa S; Marruecos J; Domenech S; de la Iglesia N; Balana C
    Clin Cancer Res; 2021 Jan; 27(2):645-655. PubMed ID: 33106291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of cuproptosis-related subtypes, construction of a prognosis model, and tumor microenvironment landscape in gastric cancer.
    Wang J; Qin D; Tao Z; Wang B; Xie Y; Wang Y; Li B; Cao J; Qiao X; Zhong S; Hu X
    Front Immunol; 2022; 13():1056932. PubMed ID: 36479114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep learning approach based on multi-omics data integration to construct a risk stratification prediction model for skin cutaneous melanoma.
    Li W; Huang Q; Peng Y; Pan S; Hu M; Wang P; He Y
    J Cancer Res Clin Oncol; 2023 Nov; 149(17):15923-15938. PubMed ID: 37673824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation a prognostic model based on natural killer T cells marker genes for predicting prognosis and characterizing immune status in glioblastoma through integrated analysis of single-cell and bulk RNA sequencing.
    Hu J; Xu L; Fu W; Sun Y; Wang N; Zhang J; Yang C; Zhang X; Zhou Y; Wang R; Zhang H; Mou R; Du X; Li X; Hu S; Xie R
    Funct Integr Genomics; 2023 Aug; 23(3):286. PubMed ID: 37650991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of fatty acid metabolism-related molecular subtype biomarkers and their correlation with immune checkpoints in cutaneous melanoma.
    Xu Y; Chen Y; Jiang W; Yin X; Chen D; Chi Y; Wang Y; Zhang J; Zhang Q; Han Y
    Front Immunol; 2022; 13():967277. PubMed ID: 36466837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomics-based prognostic signature and nomogram construction of hypoxia microenvironment on deteriorating glioblastoma (GBM) pathogenesis.
    Wen YD; Zhu XS; Li DJ; Zhao Q; Cheng Q; Peng Y
    Sci Rep; 2021 Aug; 11(1):17170. PubMed ID: 34446747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.