These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38231692)

  • 1. The potential of graphene coatings as neural interfaces.
    Lopes V; Moreira G; Bramini M; Capasso A
    Nanoscale Horiz; 2024 Feb; 9(3):384-406. PubMed ID: 38231692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of organic and inorganic biomaterials for neural interfaces.
    Fattahi P; Yang G; Kim G; Abidian MR
    Adv Mater; 2014 Mar; 26(12):1846-85. PubMed ID: 24677434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Reduced Graphene Oxide Scaffolds with a Combinatorial Fibrous-Porous Architecture for Neural Tissue Engineering.
    Girão AF; Sousa J; Domínguez-Bajo A; González-Mayorga A; Bdikin I; Pujades-Otero E; Casañ-Pastor N; Hortigüela MJ; Otero-Irurueta G; Completo A; Serrano MC; Marques PAAP
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):38962-38975. PubMed ID: 32805917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine.
    Menaa F; Abdelghani A; Menaa B
    J Tissue Eng Regen Med; 2015 Dec; 9(12):1321-38. PubMed ID: 24917559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of electrospun silk fibroin scaffolds coated with graphene oxide and reduced graphene for applications in biomedicine.
    Aznar-Cervantes S; Martínez JG; Bernabeu-Esclapez A; Lozano-Pérez AA; Meseguer-Olmo L; Otero TF; Cenis JL
    Bioelectrochemistry; 2016 Apr; 108():36-45. PubMed ID: 26717014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.
    Shadjou N; Hasanzadeh M
    J Biomed Mater Res A; 2016 May; 104(5):1250-75. PubMed ID: 26748447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in graphene monolayers growth and their biological applications: A review.
    Mudusu D; Nandanapalli KR; Lee S; Hahn YB
    Adv Colloid Interface Sci; 2020 Sep; 283():102225. PubMed ID: 32777519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene-Based Nanomaterials: Potential Tools for Neurorepair.
    Wang Q; Li YH; Jiang WJ; Zhao JG; Xiao BG; Zhang GX; Ma CG
    Curr Pharm Des; 2018; 24(1):56-61. PubMed ID: 28847305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphite Oxide to Graphene. Biomaterials to Bionics.
    Thompson BC; Murray E; Wallace GG
    Adv Mater; 2015 Dec; 27(46):7563-82. PubMed ID: 25914294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monolayer Graphene Coating of Intracortical Probes for Long-Lasting Neural Activity Monitoring.
    Bourrier A; Shkorbatova P; Bonizzato M; Rey E; Barraud Q; Courtine G; Othmen R; Reita V; Bouchiat V; Delacour C
    Adv Healthc Mater; 2019 Sep; 8(18):e1801331. PubMed ID: 31402600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation.
    Lee WC; Lim CH; Kenry ; Su C; Loh KP; Lim CT
    Small; 2015 Feb; 11(8):963-9. PubMed ID: 25320042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene and graphene oxide as new nanocarriers for drug delivery applications.
    Liu J; Cui L; Losic D
    Acta Biomater; 2013 Dec; 9(12):9243-57. PubMed ID: 23958782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CVD Growth of Graphene on NiTi Alloy for Enhanced Biological Activity.
    Li J; Wang G; Geng H; Zhu H; Zhang M; Di Z; Liu X; Chu PK; Wang X
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):19876-81. PubMed ID: 26323051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-based nanobiocatalytic systems: recent advances and future prospects.
    Pavlidis IV; Patila M; Bornscheuer UT; Gournis D; Stamatis H
    Trends Biotechnol; 2014 Jun; 32(6):312-20. PubMed ID: 24794165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glial cell responses on tetrapod-shaped graphene oxide and reduced graphene oxide 3D scaffolds in brain in vitro and ex vivo models of indirect contact.
    Schmitt C; Rasch F; Cossais F; Held-Feindt J; Lucius R; Vázquez AR; Nia AS; Lohe MR; Feng X; Mishra YK; Adelung R; Schütt F; Hattermann K
    Biomed Mater; 2020 Dec; 16(1):015008. PubMed ID: 32688352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene in Regenerative Medicine: Focus on Stem Cells and Neuronal Differentiation.
    Gardin C; Piattelli A; Zavan B
    Trends Biotechnol; 2016 Jun; 34(6):435-437. PubMed ID: 26879187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication, Characterization, and Biocompatibility of Polymer Cored Reduced Graphene Oxide Nanofibers.
    Jin L; Wu D; Kuddannaya S; Zhang Y; Wang Z
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5170-7. PubMed ID: 26836319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in the synthesis and applications of graphene-polypeptide nanocomposites.
    Qian Y; Di S; Wang L; Li Z
    J Mater Chem B; 2021 Sep; 9(33):6521-6535. PubMed ID: 34318859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerating bioelectric functional development of neural stem cells by graphene coupling: Implications for neural interfacing with conductive materials.
    Guo R; Zhang S; Xiao M; Qian F; He Z; Li D; Zhang X; Li H; Yang X; Wang M; Chai R; Tang M
    Biomaterials; 2016 Nov; 106():193-204. PubMed ID: 27566868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly cytocompatible and flexible three-dimensional graphene/polydimethylsiloxane composite for culture and electrochemical detection of L929 fibroblast cells.
    Waiwijit U; Maturos T; Pakapongpan S; Phokharatkul D; Wisitsoraat A; Tuantranont A
    J Biomater Appl; 2016 Aug; 31(2):230-40. PubMed ID: 27358375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.