These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 38231697)

  • 1. Exploring an Electrochemical Route for Water-Enhanced Oxygenation Reactions Utilizing Nickel Molecular Structures: A Case Study.
    Behrouzi L; Mohammadi MR; Dau H; Kaboudin B; Najafpour MM
    Inorg Chem; 2024 Jan; 63(4):2268-2274. PubMed ID: 38231697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finding the True Catalyst for Water Oxidation at Low Overpotential in the Presence of a Metal Complex.
    Akbari MSA; Zand Z; Aleshkevych P; Jagličić Z; Najafpour MM
    Inorg Chem; 2022 Feb; 61(8):3801-3810. PubMed ID: 35179022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nickel(ii) complex under water-oxidation reaction: what is the true catalyst?
    Feizi H; Bagheri R; Jagličić Z; Singh JP; Chae KH; Song Z; Najafpour MM
    Dalton Trans; 2019 Jan; 48(2):547-557. PubMed ID: 30525137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ni(NH
    Wang Y; Wang Y; Huang X; Chen M; Xu Y
    J Environ Sci (China); 2023 Apr; 126():556-564. PubMed ID: 36503781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient chemical and visible-light-driven water oxidation using nickel complexes and salts as precatalysts.
    Chen G; Chen L; Ng SM; Lau TC
    ChemSusChem; 2014 Jan; 7(1):127-34. PubMed ID: 24155063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions.
    Li X; Lei H; Xie L; Wang N; Zhang W; Cao R
    Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Green Solvents in Metallaphotoredox Cross-Electrophile Coupling Reactions Utilizing a Lipophilic Modified Dual Ir/Ni Catalyst System.
    Delgado P; Glass RJ; Geraci G; Duvadie R; Majumdar D; Robinson RI; Elmaarouf I; Mikus M; Tan KL
    J Org Chem; 2021 Dec; 86(23):17428-17436. PubMed ID: 34808052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study.
    Chen Y; Xie C; Li Y; Song C; Bolin TB
    Phys Chem Chem Phys; 2010 Jun; 12(21):5707-11. PubMed ID: 20431820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using coal fly ash as a support for Mn(II), Co(II) and Ni(II) and utilizing the materials as novel oxidation catalysts for 4-chlorophenol mineralization.
    Deka B; Bhattacharyya KG
    J Environ Manage; 2015 Mar; 150():479-488. PubMed ID: 25560663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-template synthesis of hollow ellipsoid Ni-Mn sulfides for supercapacitors, electrocatalytic oxidation of glucose and water treatment.
    Cheng C; Kong D; Wei C; Du W; Zhao J; Feng Y; Duan Q
    Dalton Trans; 2017 Apr; 46(16):5406-5413. PubMed ID: 28387399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative Addition of Aryl Halides to a Ni(I)-Bipyridine Complex.
    Ting SI; Williams WL; Doyle AG
    J Am Chem Soc; 2022 Mar; 144(12):5575-5582. PubMed ID: 35298885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promotional effect of Mn modification on DeNO
    Zi Z; Zhu B; Sun Y; Fang Q; Ge T
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):10117-10126. PubMed ID: 30747322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid reduction of N-nitrosamine disinfection byproducts in water with hydrogen and porous nickel catalysts.
    Frierdich AJ; Shapley JR; Strathmann TJ
    Environ Sci Technol; 2008 Jan; 42(1):262-9. PubMed ID: 18350906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water oxidation by a nickel-glycine catalyst.
    Wang D; Ghirlanda G; Allen JP
    J Am Chem Soc; 2014 Jul; 136(29):10198-201. PubMed ID: 24992489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single Atom Dynamics in Chemical Reactions.
    Boyes ED; LaGrow AP; Ward MR; Mitchell RW; Gai PL
    Acc Chem Res; 2020 Feb; 53(2):390-399. PubMed ID: 32022555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Template-Assisted Synthesis of Nickel Sulfide Nanowires: Tuning the Compositions for Supercapacitors with Improved Electrochemical Stability.
    Zang X; Dai Z; Yang J; Zhang Y; Huang W; Dong X
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24645-51. PubMed ID: 27584060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyoxometalate-Supported Bis(2,2'-bipyridine)mono(aqua)nickel(II) Coordination Complex: an Efficient Electrocatalyst for Water Oxidation.
    Singh C; Mukhopadhyay S; Das SK
    Inorg Chem; 2018 Jun; 57(11):6479-6490. PubMed ID: 29762026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Dimensional Layered Hydroxide Nanoporous Nanohybrids Pillared with Zero-Dimensional Polyoxovanadate Nanoclusters for Enhanced Water Oxidation Catalysis.
    Gunjakar JL; Hou B; Inamdar AI; Pawar SM; Ahmed ATA; Chavan HS; Kim J; Cho S; Lee S; Jo Y; Hwang SJ; Kim TG; Cha S; Kim H; Im H
    Small; 2018 Dec; 14(49):e1703481. PubMed ID: 30371003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.