These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 3823184)

  • 21. Chronic methamphetamine and its withdrawal modify behavioral and neuroendocrine circadian rhythms.
    Morimasa T; Wirz-Justice A; Kraeuchi K; Arendt J; Baumann J; Haeusler A; Degen P; Feer H
    Physiol Behav; 1987; 39(6):699-705. PubMed ID: 3602122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Possible evidence for shift work schedules in the media workers of the ant species Camponotus compressus.
    Sharma VK; Lone SR; Mathew D; Goel A; Chandrashekaran MK
    Chronobiol Int; 2004 Mar; 21(2):297-308. PubMed ID: 15332348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The circadian control of behavior in the rat affected by the chronic application of methamphetamine.
    Rietveld WJ; Korving J; Boon ME; Wirz-Justice A
    Prog Clin Biol Res; 1987; 227B():513-7. PubMed ID: 3628359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Circadian variation in methamphetamine- and apomorphine-induced increase in ambulatory activity in mice.
    Kuribara H; Tadokoro S
    Pharmacol Biochem Behav; 1982 Dec; 17(6):1251-6. PubMed ID: 7163356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of photoperiod on rat motor activity rhythm at the lower limit of entrainment.
    Cambras T; Chiesa J; Araujo J; Díez-Noguera A
    J Biol Rhythms; 2004 Jun; 19(3):216-25. PubMed ID: 15155008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coupling between feeding- and light-entrainable circadian pacemakers in the rat.
    Stephan FK
    Physiol Behav; 1986 Oct; 38(4):537-44. PubMed ID: 3823166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermocyclic and photocyclic entrainment of circadian locomotor activity rhythms in sleepy lizards, Tiliqua rugosa.
    Ellis DJ; Firth BT; Belan I
    Chronobiol Int; 2009 Oct; 26(7):1369-88. PubMed ID: 19916837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Food-entrained circadian rhythms in rats are insensitive to deuterium oxide.
    Mistlberger RE; Marchant EG; Kippin TE
    Brain Res; 2001 Nov; 919(2):283-91. PubMed ID: 11701140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aging impairs methamphetamine-induced free-running and anticipatory locomotor activity rhythms in rats.
    Shibata S; Minamoto Y; Ono M; Watanabe S
    Neurosci Lett; 1994 May; 172(1-2):107-10. PubMed ID: 8084510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-continuous observation of the effects of methamphetamine on wheel-running and drinking in mice.
    Uchihashi Y; Kuribara H; Yasuda H; Umezu T; Tadokoro S
    Prog Neuropsychopharmacol Biol Psychiatry; 1994 Mar; 18(2):397-407. PubMed ID: 8208988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Forced desynchronization model for a diurnal primate.
    Silva CA; Melo LIM; Pires AR; Barbalho JC; Melo AV; Fernandes DAC; Oliveira EB; Azevedo CVM; Cambras T; Díez-Noguera A; Fontenele-Araujo J
    Chronobiol Int; 2018 Jan; 35(1):35-48. PubMed ID: 29211510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lithium and genetic inhibition of GSK3beta enhance the effect of methamphetamine on circadian rhythms in the mouse.
    Mohawk JA; Miranda-Anaya M; Tataroglu O; Menaker M
    Behav Pharmacol; 2009 Mar; 20(2):174-83. PubMed ID: 19339873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Circadian variations in trichloroethylene toxicity under a 12:12 hr light-dark cycle and their alterations under constant darkness in rats.
    Motohashi Y; Kawakami T; Miyazaki Y; Takano T; Ekataksin W
    Toxicol Appl Pharmacol; 1990 Jun; 104(1):139-48. PubMed ID: 2360203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vitamin B12 accelerates re-entrainment of activity rhythms in rats.
    Tsujimaru S; Ida Y; Satoh H; Egami H; Shirao I; Mukasa H; Nakazawa Y
    Life Sci; 1992; 50(24):1843-50. PubMed ID: 1598070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heavy water as a tool for study of the forces that control length of period of the 24-hour clock of the hamster.
    Richter CP
    Proc Natl Acad Sci U S A; 1977 Mar; 74(3):1295-9. PubMed ID: 265574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Entrainment of methamphetamine-induced locomotor activity rhythm to feeding cycles in SCN-lesioned rats.
    Honma S; Kanematsu N; Honma K
    Physiol Behav; 1992 Nov; 52(5):843-50. PubMed ID: 1484838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light-dark cycles.
    Yamanaka Y; Honma S; Honma K
    Genes Cells; 2008 May; 13(5):497-507. PubMed ID: 18429821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circadian discrimination of reward: evidence for simultaneous yet separable food- and drug-entrained rhythms in the rat.
    Jansen HT; Sergeeva A; Stark G; Sorg BA
    Chronobiol Int; 2012 May; 29(4):454-68. PubMed ID: 22475541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase-dependent phase shift of methamphetamine-induced circadian rhythm by haloperidol in SCN-lesioned rats.
    Honma S; Honma K
    Brain Res; 1995 Mar; 674(2):283-90. PubMed ID: 7796108
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Circadian activity rhythms in hamsters and rats treated with imipramine in the drinking water.
    Aschoff J
    Chronobiologia; 1989; 16(1):9-20. PubMed ID: 2721315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.