BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 38231880)

  • 1. Thermal Stability Enhancement of L-Asparaginase from
    Chi H; Jiang Q; Feng Y; Zhang G; Wang Y; Zhu P; Lu Z; Lu F
    Foods; 2023 Dec; 12(23):. PubMed ID: 38231880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a novel and glutaminase-free type II L-asparaginase from Corynebacterium glutamicum and its acrylamide alleviation efficiency in potato chips.
    Chi H; Xia B; Shen J; Zhu X; Lu Z; Lu F; Zhu P
    Int J Biol Macromol; 2022 Nov; 221():1384-1393. PubMed ID: 36130640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermostability enhancement and insight of L-asparaginase from Mycobacterium sp. via consensus-guided engineering.
    Chi H; Zhu X; Shen J; Lu Z; Lu F; Lyu Y; Zhu P
    Appl Microbiol Biotechnol; 2023 Apr; 107(7-8):2321-2333. PubMed ID: 36843197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a Novel L-Asparaginase from
    Chi H; Chen M; Jiao L; Lu Z; Bie X; Zhao H; Lu F
    Foods; 2021 Nov; 10(11):. PubMed ID: 34829099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermostability Improvement of L-Asparaginase from
    Jiao L; Chi H; Xia B; Lu Z; Bie X; Zhao H; Lu F; Chen M
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Thermostability and Molecular Insights for l-Asparaginase from
    Chi H; Wang Y; Xia B; Zhou Y; Lu Z; Lu F; Zhu P
    J Agric Food Chem; 2022 Nov; 70(45):14499-14509. PubMed ID: 36341695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a novel type I l-asparaginase from Acinetobacter soli and its ability to inhibit acrylamide formation in potato chips.
    Jiao L; Chi H; Lu Z; Zhang C; Chia SR; Show PL; Tao Y; Lu F
    J Biosci Bioeng; 2020 Jun; 129(6):672-678. PubMed ID: 32088137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective mitigation in the amount of acrylamide through enzymatic approaches.
    Abedi E; Mohammad Bagher Hashemi S; Ghiasi F
    Food Res Int; 2023 Oct; 172():113177. PubMed ID: 37689930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asparaginase Treatment of Sea Buckthorn Berries as an Effective Tool for Acrylamide Reduction in Nutritionally Enriched Wholegrain Wheat, Rye and Triticale Biscuits.
    Ciesarová Z; Kukurová K; Jelemenská V; Horváthová J; Kubincová J; Belović M; Torbica A
    Foods; 2023 Aug; 12(17):. PubMed ID: 37685103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the efficiency of thermostable L-asparaginase from B. licheniformis UDS-5 for acrylamide mitigation during preparation of French fries.
    Joshi D; Patel H; Suthar S; Patel DH; Kikani BA
    World J Microbiol Biotechnol; 2024 Feb; 40(3):92. PubMed ID: 38345704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antitumor activity and ability to prevent acrylamide formation in fried foods of asparaginase from soybean root nodules.
    Liu C; Luo L; Lin Q
    J Food Biochem; 2019 Mar; 43(3):e12756. PubMed ID: 31353561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acrylamide formation and antioxidant level in biscuits related to recipe and baking.
    Haase NU; Grothe KH; Matthäus B; Vosmann K; Lindhauer MG
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012 Aug; 29(8):1230-8. PubMed ID: 22784192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus oryzae.
    Hendriksen HV; Kornbrust BA; Østergaard PR; Stringer MA
    J Agric Food Chem; 2009 May; 57(10):4168-76. PubMed ID: 19388639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acrylamide Reduction Strategy in Combination with Deoxynivalenol Mitigation in Industrial Biscuits Production.
    Suman M; Generotti S; Cirlini M; Dall'Asta C
    Toxins (Basel); 2019 Aug; 11(9):. PubMed ID: 31461999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acrylamide formation in biscuits made of different wholegrain flours depending on their free asparagine content and baking conditions.
    Žilić S; Aktağ IG; Dodig D; Filipović M; Gökmen V
    Food Res Int; 2020 Jun; 132():109109. PubMed ID: 32331630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical characterization of a novel L-asparaginase from Paenibacillus barengoltzii being suitable for acrylamide reduction in potato chips and mooncakes.
    Shi R; Liu Y; Mu Q; Jiang Z; Yang S
    Int J Biol Macromol; 2017 Mar; 96():93-99. PubMed ID: 27919811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acrylamide mitigation in foods using recombinant L-asparaginase: An extremozyme from Himalayan Pseudomonas sp. PCH182.
    Patial V; Kumar V; Joshi R; Gupta M; Singh D
    Food Res Int; 2022 Dec; 162(Pt A):111936. PubMed ID: 36461280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asparaginase conjugated magnetic nanoparticles used for reducing acrylamide formation in food model system.
    Alam S; Ahmad R; Pranaw K; Mishra P; Khare SK
    Bioresour Technol; 2018 Dec; 269():121-126. PubMed ID: 30157443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning, structural modeling and characterization of a novel glutaminase-free L-asparaginase from Cobetia amphilecti AMI6.
    Farahat MG; Amr D; Galal A
    Int J Biol Macromol; 2020 Jan; 143():685-695. PubMed ID: 31759010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel bacterial type II l-asparaginase and evaluation of its enzymatic acrylamide reduction in French fries.
    Sun Z; Qin R; Li D; Ji K; Wang T; Cui Z; Huang Y
    Int J Biol Macromol; 2016 Nov; 92():232-239. PubMed ID: 27402458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.