These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38232101)

  • 1. Robust circuitry-based scores of structural importance of human brain areas.
    Hegedűs D; Grolmusz V
    PLoS One; 2024; 19(1):e0292613. PubMed ID: 38232101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to Direct the Edges of the Connectomes: Dynamics of the Consensus Connectomes and the Development of the Connections in the Human Brain.
    Kerepesi C; Szalkai B; Varga B; Grolmusz V
    PLoS One; 2016; 11(6):e0158680. PubMed ID: 27362431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dorsal striatum and the dynamics of the consensus connectomes in the frontal lobe of the human brain.
    Kerepesi C; Varga B; Szalkai B; Grolmusz V
    Neurosci Lett; 2018 Apr; 673():51-55. PubMed ID: 29496609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Budapest Reference Connectome Server v2.0.
    Szalkai B; Kerepesi C; Varga B; Grolmusz V
    Neurosci Lett; 2015 May; 595():60-2. PubMed ID: 25862487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering sex and age implicator edges in the human connectome.
    Keresztes L; Szögi E; Varga B; Grolmusz V
    Neurosci Lett; 2022 Nov; 791():136913. PubMed ID: 36272557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph Theoretical Analysis Reveals: Women's Brains Are Better Connected than Men's.
    Szalkai B; Varga B; Grolmusz V
    PLoS One; 2015; 10(7):e0130045. PubMed ID: 26132764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Edge density imaging: mapping the anatomic embedding of the structural connectome within the white matter of the human brain.
    Owen JP; Chang YS; Mukherjee P
    Neuroimage; 2015 Apr; 109():402-17. PubMed ID: 25592996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The frequent complete subgraphs in the human connectome.
    Fellner M; Varga B; Grolmusz V
    PLoS One; 2020; 15(8):e0236883. PubMed ID: 32817642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Frequent Network Neighborhood Mapping of the human hippocampus shows much more frequent neighbor sets in males than in females.
    Fellner M; Varga B; Grolmusz V
    PLoS One; 2020; 15(1):e0227910. PubMed ID: 31990956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introducing axonal myelination in connectomics: A preliminary analysis of g-ratio distribution in healthy subjects.
    Mancini M; Giulietti G; Dowell N; Spanò B; Harrison N; Bozzali M; Cercignani M
    Neuroimage; 2018 Nov; 182():351-359. PubMed ID: 28917698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution directed human connectomes and the Consensus Connectome Dynamics.
    Szalkai B; Kerepesi C; Varga B; Grolmusz V
    PLoS One; 2019; 14(4):e0215473. PubMed ID: 30990832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scale-Dependent Variability and Quantitative Regimes in Graph-Theoretic Representations of Human Cortical Networks.
    Irimia A; Van Horn JD
    Brain Connect; 2016 Mar; 6(2):152-63. PubMed ID: 26596775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parameterizable consensus connectomes from the Human Connectome Project: the Budapest Reference Connectome Server v3.0.
    Szalkai B; Kerepesi C; Varga B; Grolmusz V
    Cogn Neurodyn; 2017 Feb; 11(1):113-116. PubMed ID: 28174617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping correlations of psychological and structural connectome properties of the dataset of the human connectome project with the maximum spanning tree method.
    Szalkai B; Varga B; Grolmusz V
    Brain Imaging Behav; 2019 Oct; 13(5):1185-1192. PubMed ID: 30088220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome.
    Huang SY; Witzel T; Keil B; Scholz A; Davids M; Dietz P; Rummert E; Ramb R; Kirsch JE; Yendiki A; Fan Q; Tian Q; Ramos-Llordén G; Lee HH; Nummenmaa A; Bilgic B; Setsompop K; Wang F; Avram AV; Komlosh M; Benjamini D; Magdoom KN; Pathak S; Schneider W; Novikov DS; Fieremans E; Tounekti S; Mekkaoui C; Augustinack J; Berger D; Shapson-Coe A; Lichtman J; Basser PJ; Wald LL; Rosen BR
    Neuroimage; 2021 Nov; 243():118530. PubMed ID: 34464739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Building connectomes using diffusion MRI: why, how and but.
    Sotiropoulos SN; Zalesky A
    NMR Biomed; 2019 Apr; 32(4):e3752. PubMed ID: 28654718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative connectomics: Mapping the inter-individual variability of connections within the regions of the human brain.
    Kerepesi C; Szalkai B; Varga B; Grolmusz V
    Neurosci Lett; 2018 Jan; 662():17-21. PubMed ID: 28988973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reproducibility of the Structural Connectome Reconstruction across Diffusion Methods.
    Prčkovska V; Rodrigues P; Puigdellivol Sanchez A; Ramos M; Andorra M; Martinez-Heras E; Falcon C; Prats-Galino A; Villoslada P
    J Neuroimaging; 2016; 26(1):46-57. PubMed ID: 26464179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multisample study of longitudinal changes in brain network architecture in 4-13-year-old children.
    Wierenga LM; van den Heuvel MP; Oranje B; Giedd JN; Durston S; Peper JS; Brown TT; Crone EA;
    Hum Brain Mapp; 2018 Jan; 39(1):157-170. PubMed ID: 28960629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Identification of Rich-Club Organization in Weighted and Dense Structural Connectomes.
    Liang X; Yeh CH; Connelly A; Calamante F
    Brain Topogr; 2019 Jan; 32(1):1-16. PubMed ID: 29971633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.