These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38232179)
1. Dynamics-Entropy Relationship in Metallic Glasses. Cao LL; Wang YJ J Phys Chem Lett; 2024 Jan; 15(3):811-816. PubMed ID: 38232179 [TBL] [Abstract][Full Text] [Related]
2. Power law relationship between diffusion coefficients in multi-component glass forming liquids. Parmar ADS; Sengupta S; Sastry S Eur Phys J E Soft Matter; 2018 Aug; 41(8):90. PubMed ID: 30078172 [TBL] [Abstract][Full Text] [Related]
3. Adam-Gibbs model in the density scaling regime and its implications for the configurational entropy scaling. Masiewicz E; Grzybowski A; Grzybowska K; Pawlus S; Pionteck J; Paluch M Sci Rep; 2015 Sep; 5():13998. PubMed ID: 26365623 [TBL] [Abstract][Full Text] [Related]
4. Correlation between configurational entropy, excess entropy, and ion dynamics in imidazolium-based ionic liquids: Test of the Adam-Gibbs model. Cheng S; Wojnarowska Z; Musiał M; Paluch M J Chem Phys; 2021 Jan; 154(4):044502. PubMed ID: 33514081 [TBL] [Abstract][Full Text] [Related]
5. Universal Scaling in the Temperature-Dependent Viscous Dynamics of Metallic Glasses. Zhang M; Chen Y; Dai LH J Phys Chem B; 2021 Apr; 125(13):3419-3425. PubMed ID: 33764771 [TBL] [Abstract][Full Text] [Related]
6. Configurational entropy and collective modes in normal and supercooled liquids. Zürcher U; Keyes T Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):2065-70. PubMed ID: 11969999 [TBL] [Abstract][Full Text] [Related]
7. Gaussian excitations model for glass-former dynamics and thermodynamics. Matyushov DV; Angell CA J Chem Phys; 2007 Mar; 126(9):094501. PubMed ID: 17362109 [TBL] [Abstract][Full Text] [Related]
8. Decoupling between calorimetric and dynamical glass transitions in high-entropy metallic glasses. Jiang J; Lu Z; Shen J; Wada T; Kato H; Chen M Nat Commun; 2021 Jun; 12(1):3843. PubMed ID: 34158476 [TBL] [Abstract][Full Text] [Related]
9. Depicting Defects in Metallic Glasses by Atomic Vibrational Entropy. Lu X; Feng S; Li L; Wang LM; Liu R J Phys Chem Lett; 2023 Aug; 14(31):6998-7006. PubMed ID: 37523256 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamics and dynamics of a monoatomic glass former. Constant pressure and constant volume behavior. Kapko V; Matyushov DV; Angell CA J Chem Phys; 2008 Apr; 128(14):144505. PubMed ID: 18412457 [TBL] [Abstract][Full Text] [Related]
11. Glass transition memorized by the enthalpy-entropy compensation in the shear thinning of supercooled metallic liquids. Zhang M; Liu L J Phys Condens Matter; 2018 Jun; 30(24):245401. PubMed ID: 29722681 [TBL] [Abstract][Full Text] [Related]
12. The relation between molecular dynamics and configurational entropy in room temperature ionic liquids: Test of Adam-Gibbs model. Cheng S; Musiał M; Wojnarowska Z; Paluch M J Chem Phys; 2020 Mar; 152(9):091101. PubMed ID: 33480719 [TBL] [Abstract][Full Text] [Related]
13. Novel approach to numerical measurements of the configurational entropy in supercooled liquids. Berthier L; Coslovich D Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11668-72. PubMed ID: 25071188 [TBL] [Abstract][Full Text] [Related]
14. Observation of an apparent first-order glass transition in ultrafragile Pt-Cu-P bulk metallic glasses. Na JH; Corona SL; Hoff A; Johnson WL Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2779-2787. PubMed ID: 31992640 [TBL] [Abstract][Full Text] [Related]
15. Is the glassy dynamics same in 2D as in 3D? The Adam Gibbs relation test. Nath S; Sengupta S J Chem Phys; 2024 Jul; 161(3):. PubMed ID: 39012814 [TBL] [Abstract][Full Text] [Related]
16. Dynamics and thermodynamics of polymer glasses. Cangialosi D J Phys Condens Matter; 2014 Apr; 26(15):153101. PubMed ID: 24675099 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamics and dynamics of metallic glass formers: their correlation for the investigation on potential energy landscape. Hu L; Bian X; Wang W; Liu G; Jia Y J Phys Chem B; 2005 Jul; 109(28):13737-42. PubMed ID: 16852721 [TBL] [Abstract][Full Text] [Related]
18. Growing length and time scales in glass-forming liquids. Karmakar S; Dasgupta C; Sastry S Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3675-9. PubMed ID: 19234111 [TBL] [Abstract][Full Text] [Related]
19. A calorimetric investigation of thermodynamic and molecular mobility contributions to the physical stability of two pharmaceutical glasses. Zhou D; Grant DJ; Zhang GG; Law D; Schmitt EA J Pharm Sci; 2007 Jan; 96(1):71-83. PubMed ID: 17031846 [TBL] [Abstract][Full Text] [Related]
20. On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses. Bouchaud JP; Biroli G J Chem Phys; 2004 Oct; 121(15):7347-54. PubMed ID: 15473805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]