These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38232235)

  • 1. Accelerated Pure Shift NMR Spectroscopy with Deep Learning.
    Zhan H; Liu J; Fang Q; Chen X; Hu L
    Anal Chem; 2024 Jan; 96(4):1515-1521. PubMed ID: 38232235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated Nuclear Magnetic Resonance Spectroscopy with Deep Learning.
    Qu X; Huang Y; Lu H; Qiu T; Guo D; Agback T; Orekhov V; Chen Z
    Angew Chem Int Ed Engl; 2020 Jun; 59(26):10297-10300. PubMed ID: 31490596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast Acquisition of High-Quality Nuclear Magnetic Resonance Pure Shift Spectroscopy via a Deep Neural Network.
    Zheng X; Yang Z; Yang C; Shi X; Luo Y; Luo J; Zeng Q; Lin Y; Chen Z
    J Phys Chem Lett; 2022 Mar; 13(9):2101-2106. PubMed ID: 35225613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast reconstruction of non-uniform sampling multidimensional NMR spectroscopy via a deep neural network.
    Luo J; Zeng Q; Wu K; Lin Y
    J Magn Reson; 2020 Aug; 317():106772. PubMed ID: 32589585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning Methodology for Obtaining Ultraclean Pure Shift Proton Nuclear Magnetic Resonance Spectra.
    Yang Z; Zheng X; Gao X; Zeng Q; Yang C; Luo J; Zhan C; Lin Y
    J Phys Chem Lett; 2023 Apr; 14(14):3397-3402. PubMed ID: 36999661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous determination of multiple coupling networks by high-resolution 2D J-edited NMR spectroscopy.
    Zhan H; Huang C; Gao C; Lin E; Huang Y; Chen Z
    Anal Chim Acta; 2021 Nov; 1185():339055. PubMed ID: 34711310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplet analysis by strong-coupling-artifact-suppression 2D J-resolved NMR spectroscopy.
    Zhan H; Zhan F; Gao C; Lin E; Huang C; Lin X; Huang Y; Chen Z
    J Chem Phys; 2021 Jul; 155(3):034202. PubMed ID: 34293873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient determination of scalar coupling networks by band selective decoupled 2D NMR spectroscopy.
    Zhan H; Gao C; Huang C; Lin X; Huang Y; Chen Z
    Anal Chim Acta; 2023 Oct; 1277():341682. PubMed ID: 37604618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Resolution Probing of Heterogeneous Samples by Spatially Selective Pure Shift NMR Spectroscopy.
    Zhan H; Huang Y; Chen Z
    J Phys Chem Lett; 2019 Dec; 10(23):7356-7361. PubMed ID: 31718190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance parameter mapping using model-guided self-supervised deep learning.
    Liu F; Kijowski R; El Fakhri G; Feng L
    Magn Reson Med; 2021 Jun; 85(6):3211-3226. PubMed ID: 33464652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Deep Neural Networks to Reconstruct Non-uniformly Sampled NMR Spectra.
    Hansen DF
    J Biomol NMR; 2019 Nov; 73(10-11):577-585. PubMed ID: 31292846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning based multiplexed sensitivity-encoding (DL-MUSE) for high-resolution multi-shot DWI.
    Zhang H; Wang C; Chen W; Wang F; Yang Z; Xu S; Wang H
    Neuroimage; 2021 Dec; 244():118632. PubMed ID: 34627977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of deep learning-based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time.
    Kaniewska M; Deininger-Czermak E; Getzmann JM; Wang X; Lohezic M; Guggenberger R
    Eur Radiol; 2023 Mar; 33(3):1513-1525. PubMed ID: 36166084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A General Reconstruction Method for Multidimensional Sparse Sampling Nuclear Magnetic Resonance Spectroscopy.
    Lin E; Bai Z; Yuan Y; Chen Z; Yang Y; Huang Y; Chen Z
    J Phys Chem Lett; 2021 Nov; 12(43):10622-10630. PubMed ID: 34699231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of fast deep learning quantification for magnetic resonance fingerprinting in vivo.
    Cao P; Cui D; Vardhanabhuti V; Hui ES
    Magn Reson Imaging; 2020 Jul; 70():81-90. PubMed ID: 32276007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ground-truth-free deep learning for artefacts reduction in 2D radial cardiac cine MRI using a synthetically generated dataset.
    Chen D; Schaeffter T; Kolbitsch C; Kofler A
    Phys Med Biol; 2021 Apr; 66(9):. PubMed ID: 33770783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SANTIS: Sampling-Augmented Neural neTwork with Incoherent Structure for MR image reconstruction.
    Liu F; Samsonov A; Chen L; Kijowski R; Feng L
    Magn Reson Med; 2019 Nov; 82(5):1890-1904. PubMed ID: 31166049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning-based reconstruction for acceleration of lumbar spine MRI: a prospective comparison with standard MRI.
    Yoo H; Yoo RE; Choi SH; Hwang I; Lee JY; Seo JY; Koh SY; Choi KS; Kang KM; Yun TJ
    Eur Radiol; 2023 Dec; 33(12):8656-8668. PubMed ID: 37498386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 20-fold Accelerated 7T fMRI Using Referenceless Self-Supervised Deep Learning Reconstruction.
    Demirel OB; Yaman B; Dowdle L; Moeller S; Vizioli L; Yacoub E; Strupp J; Olman CA; Ugurbil K; Akcakaya M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3765-3769. PubMed ID: 34892055
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.