These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38232429)

  • 1. Investigating navigation strategies in the Morris Water Maze through deep reinforcement learning.
    Liu A; Borisyuk A
    Neural Netw; 2024 Apr; 172():106050. PubMed ID: 38232429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual Morris water maze: opportunities and challenges.
    Thornberry C; Cimadevilla JM; Commins S
    Rev Neurosci; 2021 Dec; 32(8):887-903. PubMed ID: 33838098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vector-based navigation using grid-like representations in artificial agents.
    Banino A; Barry C; Uria B; Blundell C; Lillicrap T; Mirowski P; Pritzel A; Chadwick MJ; Degris T; Modayil J; Wayne G; Soyer H; Viola F; Zhang B; Goroshin R; Rabinowitz N; Pascanu R; Beattie C; Petersen S; Sadik A; Gaffney S; King H; Kavukcuoglu K; Hassabis D; Hadsell R; Kumaran D
    Nature; 2018 May; 557(7705):429-433. PubMed ID: 29743670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variants of the Morris water maze task to comparatively assess human and rodent place navigation.
    Schoenfeld R; Schiffelholz T; Beyer C; Leplow B; Foreman N
    Neurobiol Learn Mem; 2017 Mar; 139():117-127. PubMed ID: 28057502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathfinder: open source software for analyzing spatial navigation search strategies.
    Cooke MB; O'Leary TP; Harris P; Ma R; Brown RE; Snyder JS
    F1000Res; 2019; 8():1521. PubMed ID: 32025289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep reinforcement learning to study spatial navigation, learning and memory in artificial and biological agents.
    Bermudez-Contreras E
    Biol Cybern; 2021 Apr; 115(2):131-134. PubMed ID: 33564968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement learning approaches to hippocampus-dependent flexible spatial navigation.
    Tessereau C; O'Dea R; Coombes S; Bast T
    Brain Neurosci Adv; 2021; 5():2398212820975634. PubMed ID: 33954259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive maps in rats and humans for spatial navigation.
    de Cothi W; Nyberg N; Griesbauer EM; Ghanamé C; Zisch F; Lefort JM; Fletcher L; Newton C; Renaudineau S; Bendor D; Grieves R; Duvelle É; Barry C; Spiers HJ
    Curr Biol; 2022 Sep; 32(17):3676-3689.e5. PubMed ID: 35863351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced Hippocampal Volumes Partially Mediate Effects of Prenatal Alcohol Exposure on Spatial Navigation on a Virtual Water Maze Task in Children.
    Dodge NC; Thomas KGF; Meintjes EM; Molteno CD; Jacobson JL; Jacobson SW
    Alcohol Clin Exp Res; 2020 Apr; 44(4):844-855. PubMed ID: 32196695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Value of water mazes for assessing spatial and egocentric learning and memory in rodent basic research and regulatory studies.
    Vorhees CV; Williams MT
    Neurotoxicol Teratol; 2014; 45():75-90. PubMed ID: 25116937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of spatial strategies producing generalization gradient and blocking: A computational approach.
    Dollé L; Chavarriaga R; Guillot A; Khamassi M
    PLoS Comput Biol; 2018 Apr; 14(4):e1006092. PubMed ID: 29630600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Search strategy analysis of Tg4-42 Alzheimer Mice in the Morris Water Maze reveals early spatial navigation deficits.
    Curdt N; Schmitt FW; Bouter C; Iseni T; Weile HC; Altunok B; Beindorff N; Bayer TA; Cooke MB; Bouter Y
    Sci Rep; 2022 Mar; 12(1):5451. PubMed ID: 35361814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular deep reinforcement learning from reward and punishment for robot navigation.
    Wang J; Elfwing S; Uchibe E
    Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning.
    Zhou X; Bai T; Gao Y; Han Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incidental learning of allocentric and egocentric strategies by both men and women in a dual-strategy virtual Morris Water Maze.
    Ferguson TD; Livingstone-Lee SA; Skelton RW
    Behav Brain Res; 2019 May; 364():281-295. PubMed ID: 30794853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex differences in virtual navigation influenced by scale and navigation experience.
    Padilla LM; Creem-Regehr SH; Stefanucci JK; Cashdan EA
    Psychon Bull Rev; 2017 Apr; 24(2):582-590. PubMed ID: 27714666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of pool shape manipulations on rat spatial memory acquired in the Morris water maze.
    Bye CM; Hong NS; Moore K; Deibel SH; McDonald RJ
    Learn Behav; 2019 Mar; 47(1):29-37. PubMed ID: 29520732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple Self-Supervised Auxiliary Tasks for Target-Driven Visual Navigation Using Deep Reinforcement Learning.
    Zhang W; He L; Wang H; Yuan L; Xiao W
    Entropy (Basel); 2023 Jun; 25(7):. PubMed ID: 37509957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze.
    van Gerven DJH; Ferguson T; Skelton RW
    Neurobiol Learn Mem; 2016 Jul; 132():29-39. PubMed ID: 27174311
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.