These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38232448)

  • 1. Artificial intelligence-based speckle featurization and localization for ultrasound speckle tracking velocimetry.
    Lee HS; Park JH; Lee SJ
    Ultrasonics; 2024 Mar; 138():107241. PubMed ID: 38232448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning-Based Super-resolution Ultrasound Speckle Tracking Velocimetry.
    Park JH; Choi W; Yoon GY; Lee SJ
    Ultrasound Med Biol; 2020 Mar; 46(3):598-609. PubMed ID: 31917044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of ultrasound speckle image velocimetry using image enhancement techniques.
    Yeom E; Nam KH; Paeng DG; Lee SJ
    Ultrasonics; 2014 Jan; 54(1):205-16. PubMed ID: 23725769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound deep learning for monitoring of flow-vessel dynamics in murine carotid artery.
    Park JH; Seo E; Choi W; Lee SJ
    Ultrasonics; 2022 Mar; 120():106636. PubMed ID: 34826686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of red blood cell aggregates dissociation on the estimation of ultrasound speckle image velocimetry.
    Yeom E; Nam KH; Paeng DG; Lee SJ
    Ultrasonics; 2014 Aug; 54(6):1480-7. PubMed ID: 24794508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Velocity field measurements of valvular blood flow in a human superficial vein using high-frequency ultrasound speckle image velocimetry.
    Nam KH; Yeom E; Ha H; Lee SJ
    Int J Cardiovasc Imaging; 2012 Jan; 28(1):69-77. PubMed ID: 21188638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Analysis of Helical Flow with Accuracy Using Ultrasound Speckle Image Velocimetry: In Vitro and in Vivo Feasibility Studies.
    Lee SJ; Park JH; Kim JJ; Yeom E
    Ultrasound Med Biol; 2018 Mar; 44(3):657-669. PubMed ID: 29288000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Spatial Velocity Gradients on Block-Matching Accuracy for Ultrasound Velocimetry.
    Voorneveld J; Bosch JG
    Ultrasound Med Biol; 2024 Jan; 50(1):67-76. PubMed ID: 37821243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial intelligence velocimetry reveals in vivo flow rates, pressure gradients, and shear stresses in murine perivascular flows.
    Boster KAS; Cai S; LadrĂ³n-de-Guevara A; Sun J; Zheng X; Du T; Thomas JH; Nedergaard M; Karniadakis GE; Kelley DH
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2217744120. PubMed ID: 36989300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Echo particle image velocimetry.
    DeMarchi N; White C
    J Vis Exp; 2012 Dec; (70):. PubMed ID: 23299186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound Speckle Decorrelation-Based Blood Flow Measurements.
    Park DC; Park DW
    Ultrasound Med Biol; 2023 Jul; 49(7):1491-1498. PubMed ID: 37012098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct comparison of feature tracking and autocorrelation for velocity estimation.
    Bashford GR; Robinson DJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Apr; 54(4):757-67. PubMed ID: 17441585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beamforming and Speckle Reduction Using Neural Networks.
    Hyun D; Brickson LL; Looby KT; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 May; 66(5):898-910. PubMed ID: 30869612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of ultrasound correlation-based flow velocity mapping and edge velocity gradient measurement.
    Park DW; Kruger GH; Rubin JM; Hamilton J; Gottschalk P; Dodde RE; Shih AJ; Weitzel WF
    J Ultrasound Med; 2013 Oct; 32(10):1815-30. PubMed ID: 24065263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing.
    Bargsten L; Schlaefer A
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1427-1436. PubMed ID: 32556953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid PIV-PTV technique for measuring blood flow in rat mesenteric vessels.
    Ha H; Nam KH; Lee SJ
    Microvasc Res; 2012 Nov; 84(3):242-8. PubMed ID: 22820216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Velocity field estimation in transcranial small vessel using super-resolution ultrasound imaging velocimetry.
    Liang M; Liu J; Guo C; Zong Y; Wan M
    Ultrasonics; 2023 Jul; 132():107016. PubMed ID: 37094521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between velocity profile and ultrasound echogenicity in pulsatile blood flows.
    Yeom E; Lee SJ
    Clin Hemorheol Microcirc; 2015; 59(3):197-209. PubMed ID: 24002117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2-D left ventricular flow estimation by combining speckle tracking with Navier-Stokes-based regularization: an in silico, in vitro and in vivo study.
    Gao H; Bijnens N; Coisne D; Lugiez M; Rutten M; D'hooge J
    Ultrasound Med Biol; 2015 Jan; 41(1):99-113. PubMed ID: 25438850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking.
    Fadnes S; Nyrnes SA; Torp H; Lovstakken L
    Ultrasound Med Biol; 2014 Oct; 40(10):2379-91. PubMed ID: 25023104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.