These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38232686)

  • 1. Self-feedback loop-containing synthetic mRNA switches for controlled microRNA sensing.
    Liang Z; Tan K; Yin Li C; Kuang Y
    Bioorg Chem; 2024 Mar; 144():107081. PubMed ID: 38232686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orthogonal Protein-Responsive mRNA Switches for Mammalian Synthetic Biology.
    Ono H; Kawasaki S; Saito H
    ACS Synth Biol; 2020 Jan; 9(1):169-174. PubMed ID: 31765565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic mRNA-Based Systems in Mammalian Cells.
    Ohno H; Akamine S; Saito H
    Adv Biosyst; 2020 May; 4(5):e1900247. PubMed ID: 32402126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual Input-Controlled Synthetic mRNA Circuit for Bidirectional Protein Expression Regulation.
    Tan K; Hu Y; Liang Z; Li CY; Yau WL; Kuang Y
    ACS Synth Biol; 2023 Sep; 12(9):2516-2523. PubMed ID: 37652441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aptamer-Array-Guided Protein Assembly Enhances Synthetic mRNA Switch Performance.
    Lu Q; Hu Y; Yin Li C; Kuang Y
    Angew Chem Int Ed Engl; 2022 Aug; 61(34):e202207319. PubMed ID: 35703374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N 1-Methylpseudouridine substitution enhances the performance of synthetic mRNA switches in cells.
    Parr CJC; Wada S; Kotake K; Kameda S; Matsuura S; Sakashita S; Park S; Sugiyama H; Kuang Y; Saito H
    Nucleic Acids Res; 2020 Apr; 48(6):e35. PubMed ID: 32090264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic circular RNA switches and circuits that control protein expression in mammalian cells.
    Kameda S; Ohno H; Saito H
    Nucleic Acids Res; 2023 Feb; 51(4):e24. PubMed ID: 36642090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tristability in cancer-associated microRNA-TF chimera toggle switch.
    Lu M; Jolly MK; Gomoto R; Huang B; Onuchic J; Ben-Jacob E
    J Phys Chem B; 2013 Oct; 117(42):13164-74. PubMed ID: 23679052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA governs bistable cell differentiation and lineage segregation via a noncanonical feedback.
    Li CJ; Liau ES; Lee YH; Huang YZ; Liu Z; Willems A; Garside V; McGlinn E; Chen JA; Hong T
    Mol Syst Biol; 2021 Apr; 17(4):e9945. PubMed ID: 33890404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auto-regulatory feedback by RNA-binding proteins.
    Müller-McNicoll M; Rossbach O; Hui J; Medenbach J
    J Mol Cell Biol; 2019 Oct; 11(10):930-939. PubMed ID: 31152582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of MicroRNAs Using Synthetic Toehold Switch in Mammalian Cells.
    Zhao Y; Poudel P; Wang S
    Methods Mol Biol; 2024; 2774():243-258. PubMed ID: 38441769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of microRNA-responsive switch for programmable translational control in mammalian cells.
    Ning H; Liu G; Li L; Liu Q; Huang H; Xie Z
    Nat Commun; 2023 Nov; 14(1):7193. PubMed ID: 37938567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A versatile cis-acting inverter module for synthetic translational switches.
    Endo K; Hayashi K; Inoue T; Saito H
    Nat Commun; 2013; 4():2393. PubMed ID: 23999119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microRNA 221- and 222-mediated feedback loop maintains constitutive activation of NFκB and STAT3 in colorectal cancer cells.
    Liu S; Sun X; Wang M; Hou Y; Zhan Y; Jiang Y; Liu Z; Cao X; Chen P; Liu Z; Chen X; Tao Y; Xu C; Mao J; Cheng C; Li C; Hu Y; Wang L; Chin YE; Shi Y; Siebenlist U; Zhang X
    Gastroenterology; 2014 Oct; 147(4):847-859.e11. PubMed ID: 24931456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic RNA-based post-transcriptional expression control methods and genetic circuits.
    Pardi ML; Wu J; Kawasaki S; Saito H
    Adv Drug Deliv Rev; 2022 May; 184():114196. PubMed ID: 35288218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic RNA-based logic computation in mammalian cells.
    Matsuura S; Ono H; Kawasaki S; Kuang Y; Fujita Y; Saito H
    Nat Commun; 2018 Nov; 9(1):4847. PubMed ID: 30451868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reciprocal regulation between mRNA and microRNA enables a bistable switch that directs cell fate decisions.
    Tian XJ; Zhang H; Zhang J; Xing J
    FEBS Lett; 2016 Oct; 590(19):3443-3455. PubMed ID: 27578189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of modular "plug-and-play" expression platforms derived from natural riboswitches for engineering novel genetically encodable RNA regulatory devices.
    Trausch JJ; Batey RT
    Methods Enzymol; 2015; 550():41-71. PubMed ID: 25605380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedback control of protein expression in mammalian cells by tunable synthetic translational inhibition.
    Stapleton JA; Endo K; Fujita Y; Hayashi K; Takinoue M; Saito H; Inoue T
    ACS Synth Biol; 2012 Mar; 1(3):83-8. PubMed ID: 23651072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncovering the cellular capacity for intensive and specific feedback self-control of the argonautes and MicroRNA targeting activity.
    Wang D; Wang T; Gill A; Hilliard T; Chen F; Karamyshev AL; Zhang F
    Nucleic Acids Res; 2020 May; 48(9):4681-4697. PubMed ID: 32297952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.