BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 38232702)

  • 1. Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia.
    Pino JC; Posso C; Joshi SK; Nestor M; Moon J; Hansen JR; Hutchinson-Bunch C; Gritsenko MA; Weitz KK; Watanabe-Smith K; Long N; McDermott JE; Druker BJ; Liu T; Tyner JW; Agarwal A; Traer E; Piehowski PD; Tognon CE; Rodland KD; Gosline SJC
    Cell Rep Med; 2024 Jan; 5(1):101359. PubMed ID: 38232702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The proteogenomic subtypes of acute myeloid leukemia.
    Jayavelu AK; Wolf S; Buettner F; Alexe G; Häupl B; Comoglio F; Schneider C; Doebele C; Fuhrmann DC; Wagner S; Donato E; Andresen C; Wilke AC; Zindel A; Jahn D; Splettstoesser B; Plessmann U; Münch S; Abou-El-Ardat K; Makowka P; Acker F; Enssle JC; Cremer A; Schnütgen F; Kurrle N; Chapuy B; Löber J; Hartmann S; Wild PJ; Wittig I; Hübschmann D; Kaderali L; Cox J; Brüne B; Röllig C; Thiede C; Steffen B; Bornhäuser M; Trumpp A; Urlaub H; Stegmaier K; Serve H; Mann M; Oellerich T
    Cancer Cell; 2022 Mar; 40(3):301-317.e12. PubMed ID: 35245447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteogenomic analysis of acute myeloid leukemia associates relapsed disease with reprogrammed energy metabolism both in adults and children.
    Stratmann S; Vesterlund M; Umer HM; Eshtad S; Skaftason A; Herlin MK; Sundström C; Eriksson A; Höglund M; Palle J; Abrahamsson J; Jahnukainen K; Munthe-Kaas MC; Zeller B; Tamm KP; Lindskog C; Cavelier L; Lehtiö J; Holmfeldt L
    Leukemia; 2023 Mar; 37(3):550-559. PubMed ID: 36572751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteogenomics approaches for studying cancer biology and their potential in the identification of acute myeloid leukemia biomarkers.
    Hernandez-Valladares M; Vaudel M; Selheim F; Berven F; Bruserud Ø
    Expert Rev Proteomics; 2017 Aug; 14(8):649-663. PubMed ID: 28693350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphotyrosine-based Phosphoproteomics for Target Identification and Drug Response Prediction in AML Cell Lines.
    van Alphen C; Cloos J; Beekhof R; Cucchi DGJ; Piersma SR; Knol JC; Henneman AA; Pham TV; van Meerloo J; Ossenkoppele GJ; Verheul HMW; Janssen JJWM; Jimenez CR
    Mol Cell Proteomics; 2020 May; 19(5):884-899. PubMed ID: 32102969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass Spectrometry-Based Proteogenomics: New Therapeutic Opportunities for Precision Medicine.
    Joshi SK; Piehowski P; Liu T; Gosline SJC; McDermott JE; Druker BJ; Traer E; Tyner JW; Agarwal A; Tognon CE; Rodland KD
    Annu Rev Pharmacol Toxicol; 2024 Jan; 64():455-479. PubMed ID: 37738504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erythroid/megakaryocytic differentiation confers BCL-XL dependency and venetoclax resistance in acute myeloid leukemia.
    Kuusanmäki H; Dufva O; Vähä-Koskela M; Leppä AM; Huuhtanen J; Vänttinen I; Nygren P; Klievink J; Bouhlal J; Pölönen P; Zhang Q; Adnan-Awad S; Mancebo-Pérez C; Saad J; Miettinen J; Javarappa KK; Aakko S; Ruokoranta T; Eldfors S; Heinäniemi M; Theilgaard-Mönch K; Wartiovaara-Kautto U; Keränen M; Porkka K; Konopleva M; Wennerberg K; Kontro M; Heckman CA; Mustjoki S
    Blood; 2023 Mar; 141(13):1610-1625. PubMed ID: 36508699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic and phosphoproteomic measurements enhance ability to predict ex vivo drug response in AML.
    Gosline SJC; Tognon C; Nestor M; Joshi S; Modak R; Damnernsawad A; Posso C; Moon J; Hansen JR; Hutchinson-Bunch C; Pino JC; Gritsenko MA; Weitz KK; Traer E; Tyner J; Druker B; Agarwal A; Piehowski P; McDermott JE; Rodland K
    Clin Proteomics; 2022 Jul; 19(1):30. PubMed ID: 35896960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted therapy in acute myeloid leukemia: current status and new insights from a proteomic perspective.
    van Dijk AD; de Bont ESJM; Kornblau SM
    Expert Rev Proteomics; 2020 Jan; 17(1):1-10. PubMed ID: 31945303
    [No Abstract]   [Full Text] [Related]  

  • 10. Refining Classification of Cholangiocarcinoma Subtypes via Proteogenomic Integration Reveals New Therapeutic Prospects.
    Cho SY; Hwang H; Kim YH; Yoo BC; Han N; Kong SY; Baek MJ; Kim KH; Lee MR; Park JG; Han SS; Lee WJ; Park C; Park JB; Kim JY; Park SJ; Woo SM
    Gastroenterology; 2023 Jun; 164(7):1293-1309. PubMed ID: 36898552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiomics of azacitidine-treated AML cells reveals variable and convergent targets that remodel the cell-surface proteome.
    Leung KK; Nguyen A; Shi T; Tang L; Ni X; Escoubet L; MacBeth KJ; DiMartino J; Wells JA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(2):695-700. PubMed ID: 30584089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current status of clinical proteogenomics in lung cancer.
    Nishimura T; Nakamura H; Végvári Á; Marko-Varga G; Furuya N; Saji H
    Expert Rev Proteomics; 2019 Sep; 16(9):761-772. PubMed ID: 31402712
    [No Abstract]   [Full Text] [Related]  

  • 13. A quantitative analysis of heterogeneities and hallmarks in acute myelogenous leukaemia.
    Hu CW; Qiu Y; Ligeralde A; Raybon AY; Yoo SY; Coombes KR; Qutub AA; Kornblau SM
    Nat Biomed Eng; 2019 Nov; 3(11):889-901. PubMed ID: 30988472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteogenomic analysis of pancreatic cancer subtypes.
    Kafita D; Nkhoma P; Zulu M; Sinkala M
    PLoS One; 2021; 16(9):e0257084. PubMed ID: 34506537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorectal Cancer Cell Line Proteomes Are Representative of Primary Tumors and Predict Drug Sensitivity.
    Wang J; Mouradov D; Wang X; Jorissen RN; Chambers MC; Zimmerman LJ; Vasaikar S; Love CG; Li S; Lowes K; Leuchowius KJ; Jousset H; Weinstock J; Yau C; Mariadason J; Shi Z; Ban Y; Chen X; Coffey RJC; Slebos RJC; Burgess AW; Liebler DC; Zhang B; Sieber OM
    Gastroenterology; 2017 Oct; 153(4):1082-1095. PubMed ID: 28625833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive surface proteome analysis of myeloid leukemia cell lines for therapeutic antibody development.
    Strassberger V; Gutbrodt KL; Krall N; Roesli C; Takizawa H; Manz MG; Fugmann T; Neri D
    J Proteomics; 2014 Mar; 99():138-51. PubMed ID: 24487095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic biomarkers of drug resistance: A compass of prognosis and targeted therapy in acute myeloid leukemia.
    Long L; Assaraf YG; Lei ZN; Peng H; Yang L; Chen ZS; Ren S
    Drug Resist Updat; 2020 Sep; 52():100703. PubMed ID: 32599434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of H3K27 methylation identifies poor outcomes in adult-onset acute leukemia.
    van Dijk AD; Hoff FW; Qiu YH; Chandra J; Jabbour E; de Bont ESJM; Horton TM; Kornblau SM
    Clin Epigenetics; 2021 Jan; 13(1):21. PubMed ID: 33509276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutation Patterns Predict Drug Sensitivity in Acute Myeloid Leukemia.
    Qin G; Dai J; Chien S; Martins TJ; Loera B; Nguyen QH; Oakes ML; Tercan B; Aguilar B; Hagen L; McCune J; Gelinas R; Monnat RJ; Shmulevich I; Becker PS
    Clin Cancer Res; 2024 Jun; 30(12):2659-2671. PubMed ID: 38619278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Performing integrative transcriptomic and chemical screening to identify patient-specific vulnerabilities in poor-prognosis acute myeloid leukemia].
    Hashimoto M; Ishikawa F
    Rinsho Ketsueki; 2021; 62(7):774-780. PubMed ID: 34349062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.