BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38232765)

  • 1. Combining Force Fields and Neural Networks for an Accurate Representation of Bonded Interactions.
    Kamath G; Illarionov A; Sakipov S; Pereyaslavets L; Kurnikov IV; Butin O; Voronina E; Ivahnenko I; Leontyev I; Nawrocki G; Darkhovskiy M; Olevanov M; Cherniavskyi YK; Lock C; Greenslade S; Chen Y; Kornberg RD; Levitt M; Fain B
    J Phys Chem A; 2024 Feb; 128(4):807-812. PubMed ID: 38232765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking Force Field and the ANI Neural Network Potentials for the Torsional Potential Energy Surface of Biaryl Drug Fragments.
    Lahey SJ; Thien Phuc TN; Rowley CN
    J Chem Inf Model; 2020 Dec; 60(12):6258-6268. PubMed ID: 33263401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Force Fields and Neural Networks for an Accurate Representation of Chemically Diverse Molecular Interactions.
    Illarionov A; Sakipov S; Pereyaslavets L; Kurnikov IV; Kamath G; Butin O; Voronina E; Ivahnenko I; Leontyev I; Nawrocki G; Darkhovskiy M; Olevanov M; Cherniavskyi YK; Lock C; Greenslade S; Sankaranarayanan SK; Kurnikova MG; Potoff J; Kornberg RD; Levitt M; Fain B
    J Am Chem Soc; 2023 Nov; 145(43):23620-23629. PubMed ID: 37856313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a general neural network force field for protein simulations: Refining the intramolecular interaction in protein.
    Zhang P; Yang W
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37431910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward Building Protein Force Fields by Residue-Based Systematic Molecular Fragmentation and Neural Network.
    Wang H; Yang W
    J Chem Theory Comput; 2019 Feb; 15(2):1409-1417. PubMed ID: 30550274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational energies of reference organic molecules: benchmarking of common efficient computational methods against coupled cluster theory.
    Stylianakis I; Zervos N; Lii JH; Pantazis DA; Kolocouris A
    J Comput Aided Mol Des; 2023 Dec; 37(12):607-656. PubMed ID: 37597063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the conformational profiles of fenamates shows route towards novel, higher accuracy, force-fields for pharmaceuticals.
    Uzoh OG; Galek PT; Price SL
    Phys Chem Chem Phys; 2015 Mar; 17(12):7936-48. PubMed ID: 25720865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermolecular Non-Bonded Interactions from Machine Learning Datasets.
    Chen JA; Chao SD
    Molecules; 2023 Dec; 28(23):. PubMed ID: 38067629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explainable Solvation Free Energy Prediction Combining Graph Neural Networks with Chemical Intuition.
    Low K; Coote ML; Izgorodina EI
    J Chem Inf Model; 2022 Nov; 62(22):5457-5470. PubMed ID: 36317829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic Bond Energies from a Bonds-in-Molecules Neural Network.
    Yao K; Herr JE; Brown SN; Parkhill J
    J Phys Chem Lett; 2017 Jun; 8(12):2689-2694. PubMed ID: 28573865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of peptide conformation in terms of the ABEEM/MM method.
    Yang ZZ; Zhang Q
    J Comput Chem; 2006 Jan; 27(1):1-10. PubMed ID: 16235260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Differentiable Neural-Network Force Field for Ionic Liquids.
    Montes-Campos H; Carrete J; Bichelmaier S; Varela LM; Madsen GKH
    J Chem Inf Model; 2022 Jan; 62(1):88-101. PubMed ID: 34941253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a polarizable force field for proteins via ab initio quantum chemistry: first generation model and gas phase tests.
    Kaminski GA; Stern HA; Berne BJ; Friesner RA; Cao YX; Murphy RB; Zhou R; Halgren TA
    J Comput Chem; 2002 Dec; 23(16):1515-31. PubMed ID: 12395421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter- and intramolecular potential for the N-formylglycinamide-water system. A comparison between theoretical modeling and empirical force fields.
    Hermida-Ramón JM; Brdarski S; Karlström G; Berg U
    J Comput Chem; 2003 Jan; 24(2):161-76. PubMed ID: 12497597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous fitting of a potential-energy surface and its corresponding force fields using feedforward neural networks.
    Pukrittayakamee A; Malshe M; Hagan M; Raff LM; Narulkar R; Bukkapatnum S; Komanduri R
    J Chem Phys; 2009 Apr; 130(13):134101. PubMed ID: 19355711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse turns in blocked dipeptides are intrinsically unstable in water.
    Tobias DJ; Sneddon SF; Brooks CL
    J Mol Biol; 1990 Dec; 216(3):783-96. PubMed ID: 2258940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multipole-Based Force Fields from ab Initio Interaction Energies and the Need for Jointly Refitting All Intermolecular Parameters.
    Kramer C; Gedeck P; Meuwly M
    J Chem Theory Comput; 2013 Mar; 9(3):1499-511. PubMed ID: 26587612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AP-Net: An atomic-pairwise neural network for smooth and transferable interaction potentials.
    Glick ZL; Metcalf DP; Koutsoukas A; Spronk SA; Cheney DL; Sherrill CD
    J Chem Phys; 2020 Jul; 153(4):044112. PubMed ID: 32752707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of effective potentials for the stretching of C(α) ⋯ C(α) virtual bonds in polypeptide chains for coarse-grained simulations of proteins from ab initio energy surfaces of N-methylacetamide and N-acetylpyrrolidine.
    Sieradzan AK; Scheraga HA; Liwo A
    J Chem Theory Comput; 2012 Apr; 8(4):1334-1343. PubMed ID: 23087598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.