These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 38233027)
1. Merging machine learning and patient preference: a novel tool for risk prediction of percutaneous coronary interventions. Hamilton DE; Albright J; Seth M; Painter I; Maynard C; Hira RS; Sukul D; Gurm HS Eur Heart J; 2024 Feb; 45(8):601-609. PubMed ID: 38233027 [TBL] [Abstract][Full Text] [Related]
2. Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: A retrospective cohort study. Huang C; Murugiah K; Mahajan S; Li SX; Dhruva SS; Haimovich JS; Wang Y; Schulz WL; Testani JM; Wilson FP; Mena CI; Masoudi FA; Rumsfeld JS; Spertus JA; Mortazavi BJ; Krumholz HM PLoS Med; 2018 Nov; 15(11):e1002703. PubMed ID: 30481186 [TBL] [Abstract][Full Text] [Related]
3. A novel tool for reliable and accurate prediction of renal complications in patients undergoing percutaneous coronary intervention. Gurm HS; Seth M; Kooiman J; Share D J Am Coll Cardiol; 2013 Jun; 61(22):2242-8. PubMed ID: 23721921 [TBL] [Abstract][Full Text] [Related]
4. Comparison of Machine Learning Methods With National Cardiovascular Data Registry Models for Prediction of Risk of Bleeding After Percutaneous Coronary Intervention. Mortazavi BJ; Bucholz EM; Desai NR; Huang C; Curtis JP; Masoudi FA; Shaw RE; Negahban SN; Krumholz HM JAMA Netw Open; 2019 Jul; 2(7):e196835. PubMed ID: 31290991 [TBL] [Abstract][Full Text] [Related]
5. A random forest based risk model for reliable and accurate prediction of receipt of transfusion in patients undergoing percutaneous coronary intervention. Gurm HS; Kooiman J; LaLonde T; Grines C; Share D; Seth M PLoS One; 2014; 9(5):e96385. PubMed ID: 24816645 [TBL] [Abstract][Full Text] [Related]
6. The comparative safety of abciximab versus eptifibatide in patients on dialysis undergoing percutaneous coronary intervention: Insights from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2). Sukul D; Seth M; Schreiber T; Hanzel G; Khandelwal A; Cannon LA; Lalonde TA; Gurm HS J Interv Cardiol; 2017 Aug; 30(4):291-300. PubMed ID: 28543770 [TBL] [Abstract][Full Text] [Related]
7. Percutaneous Coronary Intervention for Chronic Total Occlusion-The Michigan Experience: Insights From the BMC2 Registry. Othman H; Seth M; Zein R; Rosman H; Lalonde T; Yamasaki H; Alaswad K; Menees D; Mehta RH; Gurm H; Daher E; JACC Cardiovasc Interv; 2020 Jun; 13(11):1357-1368. PubMed ID: 32417095 [TBL] [Abstract][Full Text] [Related]
8. Radial PCI and the obesity paradox: Insights from Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2). McDonagh JR; Seth M; LaLonde TA; Khandewal AK; Wohns DH; Dixon SR; Gurm HS Catheter Cardiovasc Interv; 2016 Feb; 87(2):211-9. PubMed ID: 26010906 [TBL] [Abstract][Full Text] [Related]
9. Predictive modeling for acute kidney injury after percutaneous coronary intervention in patients with acute coronary syndrome: a machine learning approach. Behnoush AH; Shariatnia MM; Khalaji A; Asadi M; Yaghoobi A; Rezaee M; Soleimani H; Sheikhy A; Aein A; Yadangi S; Jenab Y; Masoudkabir F; Mehrani M; Iskander M; Hosseini K Eur J Med Res; 2024 Jan; 29(1):76. PubMed ID: 38268045 [TBL] [Abstract][Full Text] [Related]
10. Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention. Zack CJ; Senecal C; Kinar Y; Metzger Y; Bar-Sinai Y; Widmer RJ; Lennon R; Singh M; Bell MR; Lerman A; Gulati R JACC Cardiovasc Interv; 2019 Jul; 12(14):1304-1311. PubMed ID: 31255564 [TBL] [Abstract][Full Text] [Related]
11. A novel explainable online calculator for contrast-induced AKI in diabetics: a multi-centre validation and prospective evaluation study. Ma M; Wan X; Chen Y; Lu Z; Guo D; Kong H; Pan B; Zhang H; Chen D; Xu D; Sun D; Lang H; Zhou C; Li T; Cao C J Transl Med; 2023 Jul; 21(1):517. PubMed ID: 37525240 [TBL] [Abstract][Full Text] [Related]
12. Machine learning models for prediction of adverse events after percutaneous coronary intervention. Niimi N; Shiraishi Y; Sawano M; Ikemura N; Inohara T; Ueda I; Fukuda K; Kohsaka S Sci Rep; 2022 Apr; 12(1):6262. PubMed ID: 35428765 [TBL] [Abstract][Full Text] [Related]
13. Validation of National Cardiovascular Data Registry risk models for mortality, bleeding and acute kidney injury in interventional cardiology at a German Heart Center. Wolff G; Lin Y; Quade J; Bader S; Kosejian L; Brockmeyer M; Karathanos A; Parco C; Krieger T; Heinen Y; Perings S; Albert A; Icks A; Kelm M; Schulze V Clin Res Cardiol; 2020 Feb; 109(2):235-245. PubMed ID: 31236693 [TBL] [Abstract][Full Text] [Related]
14. Association Between Neurological Status and Outcomes in Cardiac Arrest Patients Undergoing PCI in Contemporary Practice: Insights From BMC2. Hamilton DE; Kobe DS; Seth M; Sharma M; LaLonde T; Shah I; Gurm HS; Sukul D Circ Cardiovasc Interv; 2024 Oct; 17(10):e014189. PubMed ID: 39405370 [TBL] [Abstract][Full Text] [Related]
15. Machine Learning on High-Dimensional Data to Predict Bleeding Post Percutaneous Coronary Intervention. Rayfield C; Agasthi P; Mookadam F; Yang EH; Venepally NR; Ramakrishna H; Slomka P; Holmes DR; Arsanjani R J Invasive Cardiol; 2020 May; 32(5):E122-E129. PubMed ID: 32357133 [TBL] [Abstract][Full Text] [Related]
16. The epidemiology and outcomes of percutaneous coronary intervention before high-risk noncardiac surgery in contemporary practice: insights from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) Registry. Muthappan P; Smith D; Aronow HD; Eagle K; Wohns D; Fox J; Share D; Gurm HS J Am Heart Assoc; 2014 May; 3(3):e000388. PubMed ID: 24820654 [TBL] [Abstract][Full Text] [Related]
17. Machine-learning Models Predict 30-Day Mortality, Cardiovascular Complications, and Respiratory Complications After Aseptic Revision Total Joint Arthroplasty. Abraham VM; Booth G; Geiger P; Balazs GC; Goldman A Clin Orthop Relat Res; 2022 Nov; 480(11):2137-2145. PubMed ID: 35767804 [TBL] [Abstract][Full Text] [Related]
18. Validated contemporary risk model of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the National Cardiovascular Data Registry Cath-PCI Registry. Tsai TT; Patel UD; Chang TI; Kennedy KF; Masoudi FA; Matheny ME; Kosiborod M; Amin AP; Weintraub WS; Curtis JP; Messenger JC; Rumsfeld JS; Spertus JA J Am Heart Assoc; 2014 Dec; 3(6):e001380. PubMed ID: 25516439 [TBL] [Abstract][Full Text] [Related]
19. Predicting complications of percutaneous coronary intervention using a novel support vector method. Lee G; Gurm HS; Syed Z J Am Med Inform Assoc; 2013; 20(4):778-86. PubMed ID: 23599229 [TBL] [Abstract][Full Text] [Related]
20. A contemporary simple risk score for prediction of contrast-associated acute kidney injury after percutaneous coronary intervention: derivation and validation from an observational registry. Mehran R; Owen R; Chiarito M; Baber U; Sartori S; Cao D; Nicolas J; Pivato CA; Nardin M; Krishnan P; Kini A; Sharma S; Pocock S; Dangas G Lancet; 2021 Nov; 398(10315):1974-1983. PubMed ID: 34793743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]