BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38233399)

  • 1. The mitochondrial ATP-dependent potassium channel (mitoK
    Di Marco G; Gherardi G; De Mario A; Piazza I; Baraldo M; Mattarei A; Blaauw B; Rizzuto R; De Stefani D; Mammucari C
    Cell Death Dis; 2024 Jan; 15(1):58. PubMed ID: 38233399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of an ATP-sensitive potassium channel in mitochondria.
    Paggio A; Checchetto V; Campo A; Menabò R; Di Marco G; Di Lisa F; Szabo I; Rizzuto R; De Stefani D
    Nature; 2019 Aug; 572(7771):609-613. PubMed ID: 31435016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Channel Properties of the ROMK-Pore-Forming Subunit of the Mitochondrial ATP-Sensitive Potassium Channel.
    Laskowski M; Augustynek B; Bednarczyk P; Żochowska M; Kalisz J; O'Rourke B; Szewczyk A; Kulawiak B
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31731540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of human cardiac mitochondrial ATP-sensitive potassium channel and its regulation by phorbol ester in vitro.
    Jiang MT; Ljubkovic M; Nakae Y; Shi Y; Kwok WM; Stowe DF; Bosnjak ZJ
    Am J Physiol Heart Circ Physiol; 2006 May; 290(5):H1770-6. PubMed ID: 16361367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional distinctions between the mitochondrial ATP-dependent K+ channel (mitoKATP) and its inward rectifier subunit (mitoKIR).
    Mironova GD; Negoda AE; Marinov BS; Paucek P; Costa AD; Grigoriev SM; Skarga YY; Garlid KD
    J Biol Chem; 2004 Jul; 279(31):32562-8. PubMed ID: 15138282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial ATP-sensitive K+ channel opening decreases reactive oxygen species generation.
    Ferranti R; da Silva MM; Kowaltowski AJ
    FEBS Lett; 2003 Feb; 536(1-3):51-5. PubMed ID: 12586337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioenergetic and volume regulatory effects of mitoKATP channel modulators protect against hypoxia-reoxygenation-induced mitochondrial dysfunction.
    Onukwufor JO; Stevens D; Kamunde C
    J Exp Biol; 2016 Sep; 219(Pt 17):2743-51. PubMed ID: 27358470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial ROMK channel is a molecular component of mitoK(ATP).
    Foster DB; Ho AS; Rucker J; Garlid AO; Chen L; Sidor A; Garlid KD; O'Rourke B
    Circ Res; 2012 Aug; 111(4):446-54. PubMed ID: 22811560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial ATP-sensitive potassium channel activation protects cerebellar granule neurons from apoptosis induced by oxidative stress.
    Teshima Y; Akao M; Li RA; Chong TH; Baumgartner WA; Johnston MV; Marbán E
    Stroke; 2003 Jul; 34(7):1796-802. PubMed ID: 12791941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinase C isoform-dependent modulation of ATP-sensitive K+ channels in mitochondrial inner membrane.
    Garg V; Hu K
    Am J Physiol Heart Circ Physiol; 2007 Jul; 293(1):H322-32. PubMed ID: 17351068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidences for an ATP-sensitive potassium channel (KATP) in muscle and fat body mitochondria of insect.
    Slocinska M; Lubawy J; Jarmuszkiewicz W; Rosinski G
    J Insect Physiol; 2013 Nov; 59(11):1125-32. PubMed ID: 23973818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria.
    Brustovetsky T; Shalbuyeva N; Brustovetsky N
    J Physiol; 2005 Oct; 568(Pt 1):47-59. PubMed ID: 16051627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MitoKATP activity in healthy and ischemic hearts.
    Costa AD; Garlid KD
    J Bioenerg Biomembr; 2009 Apr; 41(2):123-6. PubMed ID: 19353252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of miR-133/Dio3 Axis in the T3-Dependent Modulation of Cardiac mitoK-ATP Expression.
    Canale P; Nicolini G; Pitto L; Kusmic C; Rizzo M; Balzan S; Iervasi G; Forini F
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production.
    Facundo HT; de Paula JG; Kowaltowski AJ
    Free Radic Biol Med; 2007 Apr; 42(7):1039-48. PubMed ID: 17349931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isoflurane activates human cardiac mitochondrial adenosine triphosphate-sensitive K+ channels reconstituted in lipid bilayers.
    Jiang MT; Nakae Y; Ljubkovic M; Kwok WM; Stowe DF; Bosnjak ZJ
    Anesth Analg; 2007 Oct; 105(4):926-32, table of contents. PubMed ID: 17898367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of mitochondrial ATP-dependent K+ channels by protein kinase C.
    Sato T; O'Rourke B; Marbán E
    Circ Res; 1998 Jul; 83(1):110-4. PubMed ID: 9670924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Regulation of the mitochondrial ATP-sensitive potassium channel in rat uterus cells by ROS].
    Badziuk OB; Mazur IuIu; Kosterin SO
    Ukr Biokhim Zh (1999); 2011; 83(3):48-57. PubMed ID: 21888054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heart mitochondria contain functional ATP-dependent K+ channels.
    Lacza Z; Snipes JA; Miller AW; Szabó C; Grover G; Busija DW
    J Mol Cell Cardiol; 2003 Nov; 35(11):1339-47. PubMed ID: 14596790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramitochondrial signaling: interactions among mitoKATP, PKCepsilon, ROS, and MPT.
    Costa AD; Garlid KD
    Am J Physiol Heart Circ Physiol; 2008 Aug; 295(2):H874-82. PubMed ID: 18586884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.