These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 38233788)

  • 1. Node-adaptive graph Transformer with structural encoding for accurate and robust lncRNA-disease association prediction.
    Li G; Bai P; Liang C; Luo J
    BMC Genomics; 2024 Jan; 25(1):73. PubMed ID: 38233788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs.
    Xuan P; Wang S; Cui H; Zhao Y; Zhang T; Wu P
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GCNFORMER: graph convolutional network and transformer for predicting lncRNA-disease associations.
    Yao D; Li B; Zhan X; Zhan X; Yu L
    BMC Bioinformatics; 2024 Jan; 25(1):5. PubMed ID: 38166659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mask-Guided Target Node Feature Learning and Dynamic Detailed Feature Enhancement for lncRNA-Disease Association Prediction.
    Xuan P; Wang W; Cui H; Wang S; Nakaguchi T; Zhang T
    J Chem Inf Model; 2024 Aug; 64(16):6662-6675. PubMed ID: 39112431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph Convolutional Network and Convolutional Neural Network Based Method for Predicting lncRNA-Disease Associations.
    Xuan P; Pan S; Zhang T; Liu Y; Sun H
    Cells; 2019 Aug; 8(9):. PubMed ID: 31480350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attentional multi-level representation encoding based on convolutional and variance autoencoders for lncRNA-disease association prediction.
    Sheng N; Cui H; Zhang T; Xuan P
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32444875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting lncRNA-disease associations using multiple metapaths in hierarchical graph attention networks.
    Yao D; Deng Y; Zhan X; Zhan X
    BMC Bioinformatics; 2024 Jan; 25(1):46. PubMed ID: 38287236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. gGATLDA: lncRNA-disease association prediction based on graph-level graph attention network.
    Wang L; Zhong C
    BMC Bioinformatics; 2022 Jan; 23(1):11. PubMed ID: 34983363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous graph attention network based on meta-paths for lncRNA-disease association prediction.
    Zhao X; Zhao X; Yin M
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34585231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases.
    Sheng N; Wang Y; Huang L; Gao L; Cao Y; Xie X; Fu Y
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MAGCNSE: predicting lncRNA-disease associations using multi-view attention graph convolutional network and stacking ensemble model.
    Liang Y; Zhang ZQ; Liu NN; Wu YN; Gu CL; Wang YL
    BMC Bioinformatics; 2022 May; 23(1):189. PubMed ID: 35590258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iGATTLDA: Integrative graph attention and transformer-based model for predicting lncRNA-Disease associations.
    Momanyi BM; Temesgen SA; Wang TY; Gao H; Gao R; Tang H; Tang LX
    IET Syst Biol; 2024 Oct; 18(5):172-182. PubMed ID: 39308027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks.
    Zhang H; Liang Y; Peng C; Han S; Du W; Li Y
    Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extra Trees Method for Predicting LncRNA-Disease Association Based On Multi-Layer Graph Embedding Aggregation.
    Wu QW; Cao RF; Xia JF; Ni JC; Zheng CH; Su YS
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3171-3178. PubMed ID: 34529571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting associations between CircRNA and diseases through structure-aware graph transformer and path-integral convolution.
    Wu J; Lu P; Zhang W
    Anal Biochem; 2024 Sep; 692():115554. PubMed ID: 38710353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LDAformer: predicting lncRNA-disease associations based on topological feature extraction and Transformer encoder.
    Zhou Y; Wang X; Yao L; Zhu M
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36094081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of lncRNA and disease associations based on residual graph convolutional networks with attention mechanism.
    Wang S; Qiao J; Feng S
    Sci Rep; 2024 Mar; 14(1):5185. PubMed ID: 38431702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DHNLDA: A Novel Deep Hierarchical Network Based Method for Predicting lncRNA-Disease Associations.
    Xie F; Yang Z; Song J; Dai Q; Duan X
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3395-3403. PubMed ID: 34543201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HOPEXGB: A Consensual Model for Predicting miRNA/lncRNA-Disease Associations Using a Heterogeneous Disease-miRNA-lncRNA Information Network.
    He J; Li M; Qiu J; Pu X; Guo Y
    J Chem Inf Model; 2024 Apr; 64(7):2863-2877. PubMed ID: 37604142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CNNDLP: A Method Based on Convolutional Autoencoder and Convolutional Neural Network with Adjacent Edge Attention for Predicting lncRNA-Disease Associations.
    Xuan P; Sheng N; Zhang T; Liu Y; Guo Y
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.