These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38234149)

  • 21. Managing the Nitrogen Cycle via Plasmonic (Photo)Electrocatalysis: Toward Circular Economy.
    Nazemi M; El-Sayed MA
    Acc Chem Res; 2021 Dec; 54(23):4294-4304. PubMed ID: 34719918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis.
    Chen P; Zhang N; Wang S; Zhou T; Tong Y; Ao C; Yan W; Zhang L; Chu W; Wu C; Xie Y
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6635-6640. PubMed ID: 30872473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hot electron-induced reduction of small molecules on photorecycling metal surfaces.
    Xie W; Schlücker S
    Nat Commun; 2015 Jul; 6():7570. PubMed ID: 26138619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The interface-mediated electron structure tuning of RuO
    Liu Y; Jiang X; Zhang Y; Li H; Huang W; Yang Y; Ye M; Liu Y
    Dalton Trans; 2023 Dec; 53(1):162-170. PubMed ID: 38018516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interfacial States Cause Equal Decay of Plasmons and Hot Electrons at Gold-Metal Oxide Interfaces.
    Foerster B; Hartelt M; Collins SSE; Aeschlimann M; Link S; Sönnichsen C
    Nano Lett; 2020 May; 20(5):3338-3343. PubMed ID: 32216365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions.
    Wang D; Azofra LM; Harb M; Cavallo L; Zhang X; Suryanto BHR; MacFarlane DR
    ChemSusChem; 2018 Oct; 11(19):3416-3422. PubMed ID: 30091299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manipulating Hot-Electron Injection in Metal Oxide Heterojunction Array for Ultrasensitive Surface-Enhanced Raman Scattering.
    Fan X; Wei P; Li G; Li M; Lan L; Hao Q; Qiu T
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51618-51627. PubMed ID: 34674528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single particle study: size and chemical effects on plasmon damping at the interface between adsorbate and anisotropic gold nanorods.
    Moon SW; Tsalu PV; Ha JW
    Phys Chem Chem Phys; 2018 Aug; 20(34):22197-22202. PubMed ID: 30116800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoporous Intermetallic Pd
    Wang X; Luo M; Lan J; Peng M; Tan Y
    Adv Mater; 2021 May; 33(18):e2007733. PubMed ID: 33792082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.
    Park JY; Kim SM; Lee H; Nedrygailov II
    Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Boosting the Plasmon-Mediated Electrochemical Oxidation of
    Kohila Rani K; Yang Q; Xiao YH; Devasenathipathy R; Lu Z; Chen X; Jiang L; Li Z; Liu Q; Chen H; Yu L; Li Z; Khayour S; Wang J; Wang K; Li G; Wu DY; Lu G
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38038343
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic Boosting by Surface-Plasmon-Driven Hot Electrons on Antenna-Reactor Schottky Nanodiodes.
    Kang M; Jeon B; Park JY
    Nano Lett; 2023 Jun; 23(11):5116-5122. PubMed ID: 37265068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct Plasmon-Accelerated Electrochemical Reaction on Gold Nanoparticles.
    Wang C; Nie XG; Shi Y; Zhou Y; Xu JJ; Xia XH; Chen HY
    ACS Nano; 2017 Jun; 11(6):5897-5905. PubMed ID: 28494145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-Step Synthesis of Fe-Fe
    Xie HQ; Zheng X; Feng QY; Chen XP; Zou ZH; Wang QX; Tang J; Li Y; Ling Y
    ChemSusChem; 2022 Nov; 15(21):e202200919. PubMed ID: 35906181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hot hole transfer at the plasmonic semiconductor/semiconductor interface.
    Gutiérrez M; Lian Z; Cohen B; Sakamoto M; Douhal A
    Nanoscale; 2023 Jan; 15(2):657-666. PubMed ID: 36515217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface.
    Yang Z; Chen S; Fang P; Ren B; Girault HH; Tian Z
    Phys Chem Chem Phys; 2013 Apr; 15(15):5374-8. PubMed ID: 23376970
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Janus Fe-SnO
    Zhang L; Cong M; Ding X; Jin Y; Xu F; Wang Y; Chen L; Zhang L
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):10888-10893. PubMed ID: 32243679
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-Dimensional MXene-AgNP Hollow Spheres for In Situ Surface-Enhanced Raman Scattering Detection of Catalysis Reactions.
    Yang M; Pan Y; Ji C; Shao M; Li Z; Yu J; Li C; Man B; Zhang C; Zhao X
    J Phys Chem Lett; 2023 Oct; 14(40):9019-9026. PubMed ID: 37782037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fe-VS
    Xiu Z; Zheng M; Li J; Wei F; Dong C; Zhang M; Zhou X; Han X
    ChemSusChem; 2022 Aug; 15(16):e202200741. PubMed ID: 35670288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.