These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38234204)

  • 1. Multi- and Gray-Scale Thermal Lithography of Silk Fibroin as Water-Developable Resist for Micro and Nanofabrication.
    Rostami M; Marković A; Wang Y; Pernollet J; Zhang X; Liu X; Brugger J
    Adv Sci (Weinh); 2024 Mar; 11(12):e2303518. PubMed ID: 38234204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous multiphoton lithography with multifunctional silk-centred bio-resists.
    Sun YL; Li Q; Sun SM; Huang JC; Zheng BY; Chen QD; Shao ZZ; Sun HB
    Nat Commun; 2015 Oct; 6():8612. PubMed ID: 26472600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining thermal scanning probe lithography and dry etching for grayscale nanopattern amplification.
    Erbas B; Conde-Rubio A; Liu X; Pernollet J; Wang Z; Bertsch A; Penedo M; Fantner G; Banerjee M; Kis A; Boero G; Brugger J
    Microsyst Nanoeng; 2024; 10():28. PubMed ID: 38405129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure Water-Solubility Relationship in
    Moseti KO; Yoshioka T; Kameda T; Nakazawa Y
    Molecules; 2019 Oct; 24(21):. PubMed ID: 31683683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexibility regeneration of silk fibroin in vitro.
    Zhang C; Song D; Lu Q; Hu X; Kaplan DL; Zhu H
    Biomacromolecules; 2012 Jul; 13(7):2148-53. PubMed ID: 22632113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wafer-Scale Multilayer Fabrication for Silk Fibroin-Based Microelectronics.
    Kook G; Jeong S; Kim SH; Kim MK; Lee S; Cho IJ; Choi N; Lee HJ
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):115-124. PubMed ID: 30480426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silk as a biodegradable resist for field-emission scanning probe lithography.
    Bicer M; Kumar BG; Melikov R; Bakis Dogru I; Sadeghi S; Rangelow IW; Alaca BE; Nizamoglu S
    Nanotechnology; 2020 Oct; 31(43):435303. PubMed ID: 32503021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D electron-beam writing at sub-15 nm resolution using spider silk as a resist.
    Qin N; Qian ZG; Zhou C; Xia XX; Tao TH
    Nat Commun; 2021 Aug; 12(1):5133. PubMed ID: 34446721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of novel nanocomposite films formed from silk fibroin and nano-TiO2.
    Feng XX; Zhang LL; Chen JY; Guo YH; Zhang HP; Jia CI
    Int J Biol Macromol; 2007 Jan; 40(2):105-11. PubMed ID: 16860861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of a Patterned Organic Resist into a High Performance Inorganic Hard Mask for High Resolution Pattern Transfer.
    Marneffe JF; Chan BT; Spieser M; Vereecke G; Naumov S; Vanhaeren D; Wolf H; Knoll AW
    ACS Nano; 2018 Nov; 12(11):11152-11160. PubMed ID: 30481961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genipin-modified silk-fibroin nanometric nets.
    Silva SS; Maniglio D; Motta A; Mano JF; Reis RL; Migliaresi C
    Macromol Biosci; 2008 Aug; 8(8):766-74. PubMed ID: 18432596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-protein nanoimprinting of silk fibroin films.
    Brenckle MA; Tao H; Kim S; Paquette M; Kaplan DL; Omenetto FG
    Adv Mater; 2013 May; 25(17):2409-14. PubMed ID: 23483712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolution behavior of silk fibroin in a low concentration CaCl
    Shen T; Wang T; Cheng G; Huang L; Chen L; Wu D
    Int J Biol Macromol; 2018 Jul; 113():458-463. PubMed ID: 29421494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rewritable optical storage medium of silk proteins using near-field nano-optics.
    Lee W; Zhou Z; Chen X; Qin N; Jiang J; Liu K; Liu M; Tao TH; Li W
    Nat Nanotechnol; 2020 Nov; 15(11):941-947. PubMed ID: 32778805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-water-based electron-beam lithography using silk as a resist.
    Kim S; Marelli B; Brenckle MA; Mitropoulos AN; Gil ES; Tsioris K; Tao H; Kaplan DL; Omenetto FG
    Nat Nanotechnol; 2014 Apr; 9(4):306-10. PubMed ID: 24658173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silk protein nanowires patterned using electron beam lithography.
    Pal RK; Yadavalli VK
    Nanotechnology; 2018 Aug; 29(33):335301. PubMed ID: 29808832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible bio-composites based on silks and celluloses.
    Heo S; Yun YS; Cho SY; Jin HJ
    J Nanosci Nanotechnol; 2012 Jan; 12(1):811-4. PubMed ID: 22524062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green process to prepare silk fibroin/gelatin biomaterial scaffolds.
    Lu Q; Zhang X; Hu X; Kaplan DL
    Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscopic Projection Lithography for Integrating Metallic Microstructures on Silk Protein for Biodevice Applications.
    Choi J; Kim S
    ACS Biomater Sci Eng; 2023 Nov; 9(11):6390-6397. PubMed ID: 37874691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excess acetone extraction in silk protein solution greatly accelerates the regeneration progress of silk fibroin for desalting and purification.
    Wang HY; Zhang YQ; Wei ZG
    Int J Biol Macromol; 2020 Mar; 146():588-595. PubMed ID: 31923493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.