These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 38234405)
1. Diagnostic value of radiomics in predicting Ki-67 and cytokeratin 19 expression in hepatocellular carcinoma: a systematic review and meta-analysis. Zhou L; Chen Y; Li Y; Wu C; Xue C; Wang X Front Oncol; 2023; 13():1323534. PubMed ID: 38234405 [TBL] [Abstract][Full Text] [Related]
2. MRI-Based Radiomics Methods for Predicting Ki-67 Expression in Breast Cancer: A Systematic Review and Meta-analysis. Tabnak P; HajiEsmailPoor Z; Baradaran B; Pashazadeh F; Aghebati Maleki L Acad Radiol; 2024 Mar; 31(3):763-787. PubMed ID: 37925343 [TBL] [Abstract][Full Text] [Related]
3. Artificial intelligence with magnetic resonance imaging for prediction of pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer: A systematic review and meta-analysis. Jia LL; Zheng QY; Tian JH; He DL; Zhao JX; Zhao LP; Huang G Front Oncol; 2022; 12():1026216. PubMed ID: 36313696 [TBL] [Abstract][Full Text] [Related]
4. Radiomics for the Preoperative Evaluation of Microvascular Invasion in Hepatocellular Carcinoma: A Meta-Analysis. Li L; Wu C; Huang Y; Chen J; Ye D; Su Z Front Oncol; 2022; 12():831996. PubMed ID: 35463303 [TBL] [Abstract][Full Text] [Related]
5. The differential diagnosis value of radiomics-based machine learning in Parkinson's disease: a systematic review and meta-analysis. Bian J; Wang X; Hao W; Zhang G; Wang Y Front Aging Neurosci; 2023; 15():1199826. PubMed ID: 37484694 [TBL] [Abstract][Full Text] [Related]
6. The predictive value of radiomics-based machine learning for peritoneal metastasis in gastric cancer patients: a systematic review and meta-analysis. Zhang F; Wu G; Chen N; Li R Front Oncol; 2023; 13():1196053. PubMed ID: 37465109 [TBL] [Abstract][Full Text] [Related]
7. Radiomics-based Machine Learning to Predict the Recurrence of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. Jin J; Jiang Y; Zhao YL; Huang PT Acad Radiol; 2024 Feb; 31(2):467-479. PubMed ID: 37867018 [TBL] [Abstract][Full Text] [Related]
8. CT-based radiomics for predicting Ki-67 expression in lung cancer: a systematic review and meta-analysis. Luo X; Zheng R; Zhang J; He J; Luo W; Jiang Z; Li Q Front Oncol; 2024; 14():1329801. PubMed ID: 38384802 [TBL] [Abstract][Full Text] [Related]
9. Diagnostic performance of radiomics in prediction of Ki-67 index status in non-small cell lung cancer: A systematic review and meta-analysis. Shahidi R; Hassannejad E; Baradaran M; Klontzas ME; ShahirEftekhar M; Shojaeshafiei F; HajiEsmailPoor Z; Chong W; Broomand N; Alizadeh M; Mozafari N; Sadeghsalehi H; Teimoori S; Farhadi A; Nouri H; Shobeiri P; Sotoudeh H J Med Imaging Radiat Sci; 2024 Dec; 55(4):101746. PubMed ID: 39276704 [TBL] [Abstract][Full Text] [Related]
10. Predictive value of radiomics-based machine learning for the disease-free survival in breast cancer: a systematic review and meta-analysis. Lu D; Yan Y; Jiang M; Sun S; Jiang H; Lu Y; Zhang W; Zhou X Front Oncol; 2023; 13():1173090. PubMed ID: 37664048 [TBL] [Abstract][Full Text] [Related]
11. Diagnostic performance of CT scan-based radiomics for prediction of lymph node metastasis in gastric cancer: a systematic review and meta-analysis. HajiEsmailPoor Z; Tabnak P; Baradaran B; Pashazadeh F; Aghebati-Maleki L Front Oncol; 2023; 13():1185663. PubMed ID: 37936604 [TBL] [Abstract][Full Text] [Related]
12. The diagnostic performance of radiomics-based MRI in predicting microvascular invasion in hepatocellular carcinoma: A meta-analysis. Liang G; Yu W; Liu S; Zhang M; Xie M; Liu M; Liu W Front Oncol; 2022; 12():960944. PubMed ID: 36798691 [TBL] [Abstract][Full Text] [Related]
13. Predictive value of Ma N; Yang W; Wang Q; Cui C; Hu Y; Wu Z Front Oncol; 2024; 14():1281572. PubMed ID: 38361781 [TBL] [Abstract][Full Text] [Related]
14. CT radiomics for prediction of microvascular invasion in hepatocellular carcinoma: A systematic review and meta-analysis. Zhou HY; Cheng JM; Chen TW; Zhang XM; Ou J; Cao JM; Li HJ Clinics (Sao Paulo); 2023; 78():100264. PubMed ID: 37562218 [TBL] [Abstract][Full Text] [Related]
15. Diagnostic accuracy of a machine learning-based radiomics approach of MR in predicting IDH mutations in glioma patients: a systematic review and meta-analysis. Chen X; Lei J; Wang S; Zhang J; Gou L Front Oncol; 2024; 14():1409760. PubMed ID: 39139289 [TBL] [Abstract][Full Text] [Related]
16. Diagnostic performance of radiomics in adrenal masses: A systematic review and meta-analysis. Zhang H; Lei H; Pang J Front Oncol; 2022; 12():975183. PubMed ID: 36119492 [TBL] [Abstract][Full Text] [Related]
17. Machine learning for lymph node metastasis prediction of in patients with gastric cancer: A systematic review and meta-analysis. Li Y; Xie F; Xiong Q; Lei H; Feng P Front Oncol; 2022; 12():946038. PubMed ID: 36059703 [TBL] [Abstract][Full Text] [Related]
18. Radiomics for preoperative prediction of early recurrence in hepatocellular carcinoma: a meta-analysis. Tian H; Xie Y; Wang Z Front Oncol; 2023; 13():1114983. PubMed ID: 37350952 [TBL] [Abstract][Full Text] [Related]
19. Accuracy of radiomics in the diagnosis and preoperative high-risk assessment of endometrial cancer: a systematic review and meta-analysis. He J; Liu Y; Li J; Liu S Front Oncol; 2024; 14():1334546. PubMed ID: 38344208 [TBL] [Abstract][Full Text] [Related]
20. Added value of CE-CT radiomics to predict high Ki-67 expression in hepatocellular carcinoma. Zhao YM; Xie SS; Wang J; Zhang YM; Li WC; Ye ZX; Shen W BMC Med Imaging; 2023 Sep; 23(1):138. PubMed ID: 37737166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]