BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38234459)

  • 1. New insight into biodegradable macropore filler on tuning mechanical properties and bone tissue ingrowth in sparingly dissolvable bioceramic scaffolds.
    Jiao X; Wu F; Yue X; Yang J; Zhang Y; Qiu J; Ke X; Sun X; Zhao L; Xu C; Li Y; Yang X; Yang G; Gou Z; Zhang L
    Mater Today Bio; 2024 Feb; 24():100936. PubMed ID: 38234459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning filament composition and microstructure of 3D-printed bioceramic scaffolds facilitate bone defect regeneration and repair.
    Chen Y; Huang J; Liu J; Wei Y; Yang X; Lei L; Chen L; Wu Y; Gou Z
    Regen Biomater; 2021 Mar; 8(2):rbab007. PubMed ID: 33738121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Appreciable biosafety, biocompatibility and osteogenic capability of 3D printed nonstoichiometric wollastonite scaffolds favorable for clinical translation.
    Wei Y; Wang Z; Lei L; Han J; Zhong S; Yang X; Gou Z; Chen L
    J Orthop Translat; 2024 Mar; 45():88-99. PubMed ID: 38516038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of pore-wall in direct ink writing wollastonite scaffolds favorable for tuning biodegradation and mechanical stability and enhancing osteogenic capability.
    Ke X; Qiu J; Wang X; Yang X; Shen J; Ye S; Yang G; Xu S; Bi Q; Gou Z; Jia X; Zhang L
    FASEB J; 2020 Apr; 34(4):5673-5687. PubMed ID: 32115776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational design of nonstoichiometric bioceramic scaffolds via digital light processing: tuning chemical composition and pore geometry evaluation.
    Li Y; Wu R; Yu L; Shen M; Ding X; Lu F; Liu M; Yang X; Gou Z; Xu S
    J Biol Eng; 2021 Jan; 15(1):1. PubMed ID: 33407741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printed bioceramic scaffolds: Adjusting pore dimension is beneficial for mandibular bone defects repair.
    Qin H; Wei Y; Han J; Jiang X; Yang X; Wu Y; Gou Z; Chen L
    J Tissue Eng Regen Med; 2022 Apr; 16(4):409-421. PubMed ID: 35156316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of osteogenic capability of 3D-printed bioceramic scaffolds and granules with different porosities for clinical translation.
    Yue X; Zhao L; Yang J; Jiao X; Wu F; Zhang Y; Li Y; Qiu J; Ke X; Sun X; Yang X; Gou Z; Zhang L; Yang G
    Front Bioeng Biotechnol; 2023; 11():1260639. PubMed ID: 37840661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioceramic scaffolds with triply periodic minimal surface architectures guide early-stage bone regeneration.
    Shen M; Li Y; Lu F; Gou Y; Zhong C; He S; Zhao C; Yang G; Zhang L; Yang X; Gou Z; Xu S
    Bioact Mater; 2023 Jul; 25():374-386. PubMed ID: 36865987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone tissue regeneration: The role of finely tuned pore architecture of bioactive scaffolds before clinical translation.
    Wu R; Li Y; Shen M; Yang X; Zhang L; Ke X; Yang G; Gao C; Gou Z; Xu S
    Bioact Mater; 2021 May; 6(5):1242-1254. PubMed ID: 33210022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonstoichiometric wollastonite bioceramic scaffolds with core-shell pore struts and adjustable mechanical and biodegradable properties.
    Jin Z; Wu R; Shen J; Yang X; Shen M; Xu W; Huang R; Zhang L; Yang G; Gao C; Gou Z; Xu S
    J Mech Behav Biomed Mater; 2018 Dec; 88():140-149. PubMed ID: 30170193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precisely Tuning the Pore-Wall Surface Composition of Bioceramic Scaffolds Facilitates Angiogenesis and Orbital Bone Defect Repair.
    Peng Y; Wang J; Dai X; Chen M; Bao Z; Yang X; Xie J; Wang C; Shao J; Han H; Yao K; Gou Z; Ye J
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43987-44001. PubMed ID: 36102779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The design of strut/TPMS-based pore geometries in bioceramic scaffolds guiding osteogenesis and angiogenesis in bone regeneration.
    Li Y; Li J; Jiang S; Zhong C; Zhao C; Jiao Y; Shen J; Chen H; Ye M; Zhou J; Yang X; Gou Z; Xu S; Shen M
    Mater Today Bio; 2023 Jun; 20():100667. PubMed ID: 37273795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of strontium-containing on the properties of Mg-doped wollastonite bioceramic scaffolds.
    Wang S; Liu L; Zhou X; Yang D; Shi Z; Hao Y
    Biomed Eng Online; 2019 Dec; 18(1):119. PubMed ID: 31829229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Custom Repair of Mandibular Bone Defects with 3D Printed Bioceramic Scaffolds.
    Shao H; Sun M; Zhang F; Liu A; He Y; Fu J; Yang X; Wang H; Gou Z
    J Dent Res; 2018 Jan; 97(1):68-76. PubMed ID: 29020507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating pore architectures to evaluate vascularization efficacy in silicate-based bioceramic scaffolds.
    Wu F; Yang J; Ke X; Ye S; Bao Z; Yang X; Zhong C; Shen M; Xu S; Zhang L; Gou Z; Yang G
    Regen Biomater; 2022; 9():rbab077. PubMed ID: 35480859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Core-shell bioceramic fiber-derived biphasic granules with adjustable core compositions for tuning bone regeneration efficacy.
    Bao Z; Yang J; Shen J; Wang C; Li Y; Zhang Y; Yang G; Zhong C; Xu S; Xie L; Shen M; Gou Z
    J Mater Chem B; 2023 Mar; 11(11):2417-2430. PubMed ID: 36809396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.