BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38234459)

  • 21. Hierarchically porous nagelschmidtite bioceramic-silk scaffolds for bone tissue engineering.
    Xu M; Li H; Zhai D; Chang J; Chen S; Wu C
    J Mater Chem B; 2015 May; 3(18):3799-3809. PubMed ID: 32262854
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual-core-component multiphasic bioceramic granules with selective-area porous structures facilitating bone tissue regeneration and repair.
    Cao B; Xie L; Xu Y; Shen J; Zhang Y; Wang Y; Weng X; Bao Z; Yang X; Gou Z; Wang C
    RSC Adv; 2024 Mar; 14(15):10526-10537. PubMed ID: 38567335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Core-Shell Bioactive Ceramic Robocasting: Tuning Component Distribution Beneficial for Highly Efficient Alveolar Bone Regeneration and Repair.
    Lei L; Wei Y; Wang Z; Han J; Sun J; Chen Y; Yang X; Wu Y; Chen L; Gou Z
    ACS Biomater Sci Eng; 2020 Apr; 6(4):2376-2387. PubMed ID: 33455330
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cobalt-doped bioceramic scaffolds fabricated by 3D printing show enhanced osteogenic and angiogenic properties for bone repair.
    Li J; Zhao C; Liu C; Wang Z; Ling Z; Lin B; Tan B; Zhou L; Chen Y; Liu D; Zou X; Liu W
    Biomed Eng Online; 2021 Jul; 20(1):70. PubMed ID: 34303371
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects.
    Liu A; Sun M; Shao H; Yang X; Ma C; He D; Gao Q; Liu Y; Yan S; Xu S; He Y; Fu J; Gou Z
    J Mater Chem B; 2016 Jun; 4(22):3945-3958. PubMed ID: 32263094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-Dimensional Printing of Polycaprolactone/Nano-Hydroxyapatite Composite Scaffolds with a Pore Size of 300/500 µm is Histocompatible and Promotes Osteogenesis Using Rabbit Cortical Bone Marrow Stem Cells.
    Yang Y; Qiu B; Zhou Z; Hu C; Li J; Zhou C
    Ann Transplant; 2023 Oct; 28():e940365. PubMed ID: 37904328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds.
    Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U
    Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization and in vitro assessment of three-dimensional extrusion Mg-Sr codoped SiO
    Li C; Yan T; Lou Z; Jiang Z; Shi Z; Chen Q; Gong Z; Wang B
    Biomed Eng Online; 2021 Nov; 20(1):116. PubMed ID: 34819108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel Extrusion-Microdrilling Approach to Fabricate Calcium Phosphate-Based Bioceramic Scaffolds Enabling Fast Bone Regeneration.
    He F; Lu T; Fang X; Feng S; Feng S; Tian Y; Li Y; Zuo F; Deng X; Ye J
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32340-32351. PubMed ID: 32597161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sr-HA scaffolds fabricated by SPS technology promote the repair of segmental bone defects.
    Hu B; Meng ZD; Zhang YQ; Ye LY; Wang CJ; Guo WC
    Tissue Cell; 2020 Oct; 66():101386. PubMed ID: 32933709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D plotting of highly uniform Sr
    Zhu H; Zhai D; Lin C; Zhang Y; Huan Z; Chang J; Wu C
    J Mater Chem B; 2016 Oct; 4(37):6200-6212. PubMed ID: 32263632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative stereological analysis of the highly porous hydroxyapatite scaffolds using X-ray CM and SEM.
    Zygmuntowicz J; Zima A; Czechowska J; Szlazak K; Ślosarczyk A; Konopka K
    Biomed Mater Eng; 2017; 28(3):235-246. PubMed ID: 28527187
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering.
    Tarafder S; Balla VK; Davies NM; Bandyopadhyay A; Bose S
    J Tissue Eng Regen Med; 2013 Aug; 7(8):631-41. PubMed ID: 22396130
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of macropore size in carbonate apatite honeycomb scaffolds on bone regeneration.
    Hayashi K; Munar ML; Ishikawa K
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110848. PubMed ID: 32279778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies.
    Xu M; Zhai D; Chang J; Wu C
    Acta Biomater; 2014 Jan; 10(1):463-76. PubMed ID: 24071000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Incorporation of fast dissolving glucose porogens into an injectable calcium phosphate cement for bone tissue engineering.
    Smith BT; Santoro M; Grosfeld EC; Shah SR; van den Beucken JJJP; Jansen JA; Mikos AG
    Acta Biomater; 2017 Mar; 50():68-77. PubMed ID: 27956363
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization.
    Gupte MJ; Swanson WB; Hu J; Jin X; Ma H; Zhang Z; Liu Z; Feng K; Feng G; Xiao G; Hatch N; Mishina Y; Ma PX
    Acta Biomater; 2018 Dec; 82():1-11. PubMed ID: 30321630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth.
    Chen Z; Yan X; Yin S; Liu L; Liu X; Zhao G; Ma W; Qi W; Ren Z; Liao H; Liu M; Cai D; Fang H
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110289. PubMed ID: 31753386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture.
    Barba A; Maazouz Y; Diez-Escudero A; Rappe K; Espanol M; Montufar EB; Öhman-Mägi C; Persson C; Fontecha P; Manzanares MC; Franch J; Ginebra MP
    Acta Biomater; 2018 Oct; 79():135-147. PubMed ID: 30195084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth.
    Chang B; Song W; Han T; Yan J; Li F; Zhao L; Kou H; Zhang Y
    Acta Biomater; 2016 Mar; 33():311-21. PubMed ID: 26802441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.