These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 38234482)
1. Combining brain-computer interfaces with deep reinforcement learning for robot training: a feasibility study in a simulation environment. Vukelić M; Bui M; Vorreuther A; Lingelbach K Front Neuroergon; 2023; 4():1274730. PubMed ID: 38234482 [TBL] [Abstract][Full Text] [Related]
2. Intrinsic interactive reinforcement learning - Using error-related potentials for real world human-robot interaction. Kim SK; Kirchner EA; Stefes A; Kirchner F Sci Rep; 2017 Dec; 7(1):17562. PubMed ID: 29242555 [TBL] [Abstract][Full Text] [Related]
3. Prediction of cognitive conflict during unexpected robot behavior under different mental workload conditions in a physical human-robot collaboration. John AR; Singh AK; Gramann K; Liu D; Lin CT J Neural Eng; 2024 Mar; 21(2):. PubMed ID: 38295415 [No Abstract] [Full Text] [Related]
4. A new error-monitoring brain-computer interface based on reinforcement learning for people with autism spectrum disorders. Pires G; Cruz A; Jesus D; Yasemin M; Nunes UJ; Sousa T; Castelo-Branco M J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36541535 [No Abstract] [Full Text] [Related]
5. The value-complexity trade-off for reinforcement learning based brain-computer interfaces. Levi-Aharoni H; Tishby N J Neural Eng; 2021 Feb; 17(6):066011. PubMed ID: 33586668 [TBL] [Abstract][Full Text] [Related]
6. Error-related potential-based shared autonomy via deep recurrent reinforcement learning. Wang X; Chen HT; Lin CT J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36541532 [No Abstract] [Full Text] [Related]
7. Benefits of deep learning classification of continuous noninvasive brain-computer interface control. Stieger JR; Engel SA; Suma D; He B J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34038873 [No Abstract] [Full Text] [Related]
8. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals. Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132 [TBL] [Abstract][Full Text] [Related]
9. Feedback for reinforcement learning based brain-machine interfaces using confidence metrics. Prins NW; Sanchez JC; Prasad A J Neural Eng; 2017 Jun; 14(3):036016. PubMed ID: 28240598 [TBL] [Abstract][Full Text] [Related]
10. A low-cost EEG system-based hybrid brain-computer interface for humanoid robot navigation and recognition. Choi B; Jo S PLoS One; 2013; 8(9):e74583. PubMed ID: 24023953 [TBL] [Abstract][Full Text] [Related]
11. Multiscale space-time-frequency feature-guided multitask learning CNN for motor imagery EEG classification. Liu X; Lv L; Shen Y; Xiong P; Yang J; Liu J J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33395676 [No Abstract] [Full Text] [Related]
12. IENet: a robust convolutional neural network for EEG based brain-computer interfaces. Du Y; Liu J J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35605585 [No Abstract] [Full Text] [Related]
13. A Systematic Review of Virtual Reality and Robot Therapy as Recent Rehabilitation Technologies Using EEG-Brain-Computer Interface Based on Movement-Related Cortical Potentials. Said RR; Heyat MBB; Song K; Tian C; Wu Z Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551100 [TBL] [Abstract][Full Text] [Related]
14. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments. Mackay AK; Riazuelo L; Montano L Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257 [TBL] [Abstract][Full Text] [Related]
15. EEG-Inception: A Novel Deep Convolutional Neural Network for Assistive ERP-Based Brain-Computer Interfaces. Santamaria-Vazquez E; Martinez-Cagigal V; Vaquerizo-Villar F; Hornero R IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2773-2782. PubMed ID: 33378260 [TBL] [Abstract][Full Text] [Related]
16. Robust asynchronous control of ERP-Based brain-Computer interfaces using deep learning. Santamaría-Vázquez E; Martínez-Cagigal V; Pérez-Velasco S; Marcos-Martínez D; Hornero R Comput Methods Programs Biomed; 2022 Mar; 215():106623. PubMed ID: 35030477 [TBL] [Abstract][Full Text] [Related]
18. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning. Pohlmeyer EA; Mahmoudi B; Geng S; Prins N; Sanchez JC Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4108-11. PubMed ID: 23366831 [TBL] [Abstract][Full Text] [Related]
19. Bio-robots automatic navigation with graded electric reward stimulation based on Reinforcement Learning. Zhang C; Sun C; Gao L; Zheng N; Chen W; Zheng X Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6901-4. PubMed ID: 24111331 [TBL] [Abstract][Full Text] [Related]
20. A transfer learning-based feedback training motivates the performance of SMR-BCI. Duan X; Xie S; Lv Y; Xie X; Obermayer K; Yan H J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36577144 [No Abstract] [Full Text] [Related] [Next] [New Search]